UPPER-BOUNDS FOR THE ZEROS OF ULTRASPHERICAL POLYNOMIALS

被引:19
作者
ELBERT, A [1 ]
LAFORGIA, A [1 ]
机构
[1] UNIV PALERMO,DIPARTIMENTO MATEMAT & APPLICAZ,I-90123 PALERMO,ITALY
关键词
D O I
10.1016/0021-9045(90)90025-L
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For k = 1, 2, ..., [ n 2] let xnk(λ) denote the Kth positive zero in decreasing order of the ultraspherical polynomial Pn(λ)(x). We establish upper bounds for xnk(λ). All the bounds become exact when λ = 0 and, in some cases (see case (iii) of Theorem 3.1), also when λ = 1. As a consequence of our results, we obtain for the largest zero xn1(λ)< (n2+2λn)1,2 (n+λ), λ>0.. We point out that our results remain useful for large values of λ. Numerical examples show that our upper bounds are quite sharp. © 1990.
引用
收藏
页码:88 / 97
页数:10
相关论文
共 3 条
[1]  
LAFORGIA A, 1977, SUI NODI COSTANTI CH
[2]  
LAFORGIA A, 1980, CALCOLO, V18, P211
[3]  
Szego G., 1975, AM MATH SOC C PUBL, V23