THE COVERING SALESMAN PROBLEM

被引:154
作者
CURRENT, JR
SCHILLING, DA
机构
关键词
D O I
10.1287/trsc.23.3.208
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
引用
收藏
页码:208 / 213
页数:6
相关论文
共 21 条
[1]  
AARONSON V, 1986, THESIS J HOPKINS U B
[2]  
[Anonymous], 1954, OPERATIONS RES, DOI DOI 10.1287/OPRE.2.4.393
[3]  
BALAS E, 1980, MATH PROGRAM STUD, V12, P37, DOI 10.1007/BFb0120886
[4]   A RESTRICTED LAGRANGEAN APPROACH TO THE TRAVELING SALESMAN PROBLEM [J].
BALAS, E ;
CHRISTOFIDES, N .
MATHEMATICAL PROGRAMMING, 1981, 21 (01) :19-46
[5]   AN ALGORITHM FOR SET COVERING PROBLEM [J].
BEASLEY, JE .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1987, 31 (01) :85-93
[6]  
Church R., 1974, PAP SCI, V32, P101, DOI DOI 10.1007/BF01942293
[7]   SOLVING LARGE-SCALE SYMMETRIC TRAVELING SALESMAN PROBLEMS TO OPTIMALITY [J].
CROWDER, H ;
PADBERG, MW .
MANAGEMENT SCIENCE, 1980, 26 (05) :495-509
[8]   THE SHORTEST COVERING PATH PROBLEM - AN APPLICATION OF LOCATIONAL CONSTRAINTS TO NETWORK DESIGN [J].
CURRENT, J ;
REVELLE, C ;
COHON, J .
JOURNAL OF REGIONAL SCIENCE, 1984, 24 (02) :161-183
[9]   THE MINIMUM-COVERING SHORTEST-PATH PROBLEM [J].
CURRENT, J ;
REVELLE, C ;
COHON, J .
DECISION SCIENCES, 1988, 19 (03) :490-503
[10]   THE MAXIMUM COVERING SHORTEST-PATH PROBLEM - A MULTIOBJECTIVE NETWORK DESIGN AND ROUTING FORMULATION [J].
CURRENT, JR ;
VELLE, CSR ;
COHON, JL .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1985, 21 (02) :189-199