THE LARGEST CONNECTED COMPONENT IN A RANDOM MAPPING

被引:5
作者
JAWORSKI, J [1 ]
MUTAFCHIEV, L [1 ]
机构
[1] BULGARIAN ACAD SCI,INST MATH,CTR COMP,BU-1090 SOFIA,BULGARIA
关键词
RANDOM MAPPINGS; RANDOM FORESTS; RANDOM GRAPHS; LIMITING DISTRIBUTIONS;
D O I
10.1002/rsa.3240050109
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A random mapping (T; q) of a finite set V = {1, 2, . . . , n} into itself assigns independently to each i is-an-element-of V its unique image j = T(i) is-an-element-of V with probability q for i = j and with probability 1-q/n-1 for j not-equal i. The purpose of the article is to determine the asymptotic behavior of the size of the largest connected component of the random digraph G(T)(q) representing this mapping as n --> infinity, regarding all possible values of the parameter q = q(n). (C) 1994 John Wiley & Sons, Inc.
引用
收藏
页码:73 / 94
页数:22
相关论文
共 12 条
  • [1] BERG S, 1992, RANDOM GRAPHS 89
  • [2] Bollobas B., 1985, RANDOM GRAPHS
  • [3] ERDOS P, 1960, B INT STATIST INST, V38, P343
  • [4] Feller W., 1957, INTRO PROBABILITY TH
  • [5] JAWORSKI J, 1990, RANDOM GRAPHS 87, P89
  • [6] JAWORSKI J, 1985, THESIS A MICKIEWICZ
  • [7] JAWORSKI J, 1983, GRAPH OTHER COMBINAT, P134
  • [8] PROBABILITY OF INDECOMPOSABILITY OF A RANDOM MAPPING FUNCTION
    KATZ, L
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1955, 26 (03): : 512 - 517
  • [9] Kolchin V. F., 1986, RANDOM MAPPINGS
  • [10] Mutafchiev L., 1984, MATH ED MATH, P57