NONLINEAR-PROGRAMMING AND STATIONARY EQUILIBRIA IN STOCHASTIC GAMES

被引:31
作者
FILAR, JA
SCHULTZ, TA
THUIJSMAN, F
VRIEZE, OJ
机构
[1] AUGUSTANA COLL,SCH BUSINESS ADM,ROCK ISL,IL 61201
[2] STATE UNIV LIMBURG,DEPT MATH,6200 MD MAASTRICHT,NETHERLANDS
关键词
STOCHASTIC GAME THEORY;
D O I
10.1007/BF01594936
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Stationary equilibria in discounted and limiting average finite state/action space stochastic games are shown to be equivalent to global optima of certain nonlinear programs. For zero sum limiting average games, this formulation reduces to a linear objective, nonlinear constraints program, which finds the "best" stationary strategies, even when epsilon-optimal stationary strategies do not exist, for arbitrarily small epsilon.
引用
收藏
页码:227 / 237
页数:11
相关论文
共 20 条
[1]  
BEWLEY T, 1978, MATH OPER RES, V1, P104
[2]   DISCRETE DYNAMIC-PROGRAMMING [J].
BLACKWELL, D .
ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (02) :719-&
[3]   BIG MATCH [J].
BLACKWELL, D ;
FERGUSON, TS .
ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (01) :159-+
[4]  
BRETON M, 1986, LECT NOTES ECON MATH, V265, P64
[5]  
Derman C, 1970, FINITE STATE MARKOVI
[6]  
Filar J.A., 1986, MATH PROGRAM, V35, P243
[7]  
Fink A. M., 1964, J SCI HIROSHIMA U SE, V28, P89
[8]  
GILLETTE D, 1957, CONTRIBUTIONS THEORY, V0003, P00179
[9]   LINEAR-PROGRAMMING AND MARKOV DECISION CHAINS [J].
HORDIJK, A ;
KALLENBERG, LCM .
MANAGEMENT SCIENCE, 1979, 25 (04) :352-362
[10]  
Hordijk A., 1983, International Journal of Game Theory, V12, P81, DOI 10.1007/BF01774298