CONFORMAL-INVARIANCE, EXTREMALS, AND GEODESICS IN 2-DIMENSIONAL GRAVITY WITH TORSION

被引:31
作者
KATANAEV, MO
机构
[1] Steklov Mathematical Institute, GSP-1, 117966, Moscow, Vavilov Str.
关键词
D O I
10.1063/1.529142
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The conformal symmetry transformations are elucidated for two-dimensional gravity with torsion in conformal gauge. The model is proved to describe one parameter family of surfaces with torsion. On these surfaces equations for extremal and geodesic lines are completely integrated and analyzed.
引用
收藏
页码:2483 / 2496
页数:14
相关论文
共 36 条
[1]   CANONICAL QUANTIZATION OF 1+1 DIMENSIONAL GRAVITY [J].
BANKS, T ;
SUSSKIND, L .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1984, 23 (05) :475-496
[2]  
Besse A., 1987, EINSTEIN MANIFOLDS, V2
[3]  
BESSE AL, 1987, EINSTEIN MANIFOLDS, V1
[4]   CONTINUOUS DISTRIBUTIONS OF DISLOCATIONS - A NEW APPLICATION OF THE METHODS OF NON-RIEMANNIAN GEOMETRY [J].
BILBY, BA ;
BULLOUGH, R ;
SMITH, E .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1955, 231 (1185) :263-273
[5]   ASYMPTOTIC SYMMETRY AND CONSERVED QUANTITIES IN THE POINCARE GAUGE-THEORY OF GRAVITY [J].
BLAGOJEVIC, M ;
VASILIC, M .
CLASSICAL AND QUANTUM GRAVITY, 1988, 5 (09) :1241-1257
[6]   ON THE RENORMALIZATION-GROUP EQUATIONS IN CURVED SPACETIME WITH TORSION [J].
BUCHBINDER, IL ;
SHAPIRO, IL .
CLASSICAL AND QUANTUM GRAVITY, 1990, 7 (07) :1197-1206
[7]   A SUPERSYMMETRIC LAGRANGIAN FOR POINCARE GAUGE-THEORIES OF GRAVITY [J].
CASTRO, C .
PROGRESS OF THEORETICAL PHYSICS, 1989, 82 (03) :616-630
[8]  
CHANDRASEKHAR S, 1983, MATH THEORY BLACK HO, V2
[9]  
CHANDRASEKHAR S, 1983, MATH THEORY BLACK HO, V1
[10]   ASYMPTOTICALLY NEWTONIAN CONDITIONS FOR POINCARE GAUGE-THEORY [J].
CHEN, HH ;
CHERN, DC ;
HSU, RR ;
NESTER, JM ;
YEUNG, WB .
PROGRESS OF THEORETICAL PHYSICS, 1988, 79 (01) :77-85