ON THE CONVERGENCE RATE OF THE BOUNDARY PENALTY METHOD

被引:11
作者
SHI, ZC [1 ]
机构
[1] UNIV FRANKFURT, D-6000 FRANKFURT 70, FED REP GER
关键词
D O I
10.1002/nme.1620201106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
引用
收藏
页码:2027 / 2032
页数:6
相关论文
共 6 条
[1]   FINITE-ELEMENT METHOD WITH PENALTY [J].
BABUSKA, I .
MATHEMATICS OF COMPUTATION, 1973, 27 (122) :221-228
[2]   FINITE ELEMENT METHOD FOR ELLIPTIC EQUATIONS WITH DISCONTINUOUS COEFFICIENTS [J].
BABUSKA, I .
COMPUTING, 1970, 5 (03) :207-&
[3]  
BABUSKA I, 1972, P S MATH F FINITE EL, P3
[4]   RAYLEIGH-RITZ-GALERKIN METHODS FOR DIRICHLETS PROBLEM USING SUBSPACES WITHOUT BOUNDARY CONDITIONS [J].
BRAMBLE, JH ;
SCHATZ, AH .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1970, 23 (04) :653-&
[5]  
Ciarlet PG., 1978, FINITE ELEMENT METHO
[6]   BOUNDARY PENALTY TECHNIQUES [J].
UTKU, M ;
CAREY, GF .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1982, 30 (01) :103-118