TESTS FOR HURWITZ AND SCHUR PROPERTIES OF CONVEX COMBINATION OF COMPLEX POLYNOMIALS

被引:25
作者
BOSE, NK
机构
来源
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS | 1989年 / 36卷 / 09期
关键词
D O I
10.1109/31.34672
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
引用
收藏
页码:1245 / 1247
页数:3
相关论文
共 50 条
[1]   Schur stability of the convex combination of complex polynomials [J].
Bialas, Stanislaw ;
Bialas, Malgorzata .
CONTROL AND CYBERNETICS, 2010, 39 (02) :551-558
[2]   ON ROBUST HURWITZ AND SCHUR POLYNOMIALS [J].
BOSE, NK ;
JURY, EI ;
ZEHEB, E .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1988, 33 (12) :1166-1168
[3]   Schur stability of convex combinations of complex polynomials [J].
Choo, Younseok ;
Choi, Gin Kyu .
IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2007, E90A (11) :2612-2615
[4]   A SUFFICIENT CONDITION FOR SCHUR STABILITY OF THE CONVEX COMBINATION OF THE POLYNOMIALS [J].
Bialas, Stanislaw .
OPUSCULA MATHEMATICA, 2005, 25 (01) :25-28
[6]   A test for robust Hurwitz stability of convex combinations of complex polynomials [J].
Yang, SF ;
Hwang, CY .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2002, 339 (02) :129-144
[7]   The Hadamard factorization of Hurwitz and Schur stable polynomials [J].
Garloff, J ;
Srinivasan, B .
STABILITY THEORY: HURWITZ CENTENARY CONFERENCE, CENTRO STEFANO FRANSCINI, ASCONA, 1995, 1996, 121 :19-21
[8]   Convex directions for nested Hurwitz polynomials [J].
An, SJ ;
Liu, WQ ;
Manton, JH .
42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, :6460-6461
[9]   A NECESSARY AND SUFFICIENT CONDITION FOR sigma-HURWITZ STABILITY OF THE CONVEX COMBINATION OF THE POLYNOMIALS [J].
Bialas, Stanislaw .
OPUSCULA MATHEMATICA, 2005, 25 (02) :165-168
[10]   ROOT CLUSTERING FOR CONVEX COMBINATION OF COMPLEX POLYNOMIALS [J].
GUTMAN, S .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (10) :1520-1522