A collaborative approach to develop a multi-omics data analytics platform for translational research

被引:21
|
作者
Schumacher, Axel [1 ]
Rujan, Tamas [1 ]
Hoefkens, Jens [2 ]
机构
[1] Genedata AG, Basel 4053, Switzerland
[2] Genedata Inc, Lexington, MA 02421 USA
来源
APPLIED AND TRANSLATIONAL GENOMICS | 2014年 / 3卷 / 04期
关键词
Omics; Integration; Dataanalytics; Datasharing; Translationalresearch; Scalability;
D O I
10.1016/j.atg.2014.09.010
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The integration and analysis of large datasets in translational research has become an increasingly challenging problem. We propose a collaborative approach to integrate established data management platforms with existing analytical systems to fill the hole in the value chain between data collection and data exploitation. Our proposal in particular ensures data security and provides support for widely distributed teams of researchers. As a successful example for such an approach, we describe the implementation of a unified single platform that combines capabilities of the knowledge management platform tranSMART and the data analysis system Genedata Analyst(TM). The combined end-to-end platform helps to quickly find, enter, integrate, analyze, extract, and share patient- and drug-related data in the context of translational R&D projects. (C) 2014 Published by Elsevier B.V.
引用
收藏
页码:105 / 108
页数:4
相关论文
共 50 条
  • [1] OmicsAnalyst: a comprehensive web-based platform for visual analytics of multi-omics data
    Zhou, Guangyan
    Ewald, Jessica
    Xia, Jianguo
    NUCLEIC ACIDS RESEARCH, 2021, 49 (W1) : W476 - W482
  • [2] visMOP - A Visual Analytics Approach for Multi-omics Pathways
    Brich, N.
    Schacherer, N.
    Hoene, M.
    Weigert, C.
    Lehmann, R.
    Krone, M.
    COMPUTER GRAPHICS FORUM, 2023, 42 (03) : 259 - 270
  • [3] AMIR: a multi-omics data platform for Asteraceae plants genetics and breeding research
    Liu, Dongxu
    Luo, Chengfang
    Dai, Rui
    Huang, Xiaoyan
    Chen, Xiang
    He, Lin
    Mao, Hongxia
    Li, Jiawei
    Zhang, Linna
    Yang, Qing-Yong
    Mei, Zhinan
    NUCLEIC ACIDS RESEARCH, 2024,
  • [4] Cloud Computing Enabled Big Multi-Omics Data Analytics
    Koppad, Saraswati
    Annappa, B.
    Gkoutos, Georgios, V
    Acharjee, Animesh
    BIOINFORMATICS AND BIOLOGY INSIGHTS, 2021, 15
  • [5] A comprehensive platform for analyzing longitudinal multi-omics data
    Vasaikar, Suhas V.
    Savage, Adamk.
    Gong, Qiuyu
    Swanson, Elliott
    Talla, Aarthi
    Lord, Cara
    Heubeck, Alexander T.
    Reading, Julian
    Graybuck, Lucas T.
    Meijer, Paul
    Torgerson, Troy R.
    Skene, Peter J.
    Bumol, Thomas F.
    Li, Xiao-jun
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [6] A comprehensive platform for analyzing longitudinal multi-omics data
    Suhas V. Vasaikar
    Adam K. Savage
    Qiuyu Gong
    Elliott Swanson
    Aarthi Talla
    Cara Lord
    Alexander T. Heubeck
    Julian Reading
    Lucas T. Graybuck
    Paul Meijer
    Troy R. Torgerson
    Peter J. Skene
    Thomas F. Bumol
    Xiao-jun Li
    Nature Communications, 14
  • [7] Multi-omics Visualization Platform: An extensible Galaxy plug-in for multi-omics data visualization and exploration
    McGowan, Thomas
    Johnson, James E.
    Kumar, Praveen
    Sajulga, Ray
    Mehta, Subina
    Jagtap, Pratik D.
    Griffin, Timothy J.
    GIGASCIENCE, 2020, 9 (04):
  • [8] A guide to multi-omics data collection and integration for translational medicine
    Athieniti, Efi
    Spyrou, George M.
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 134 - 149
  • [9] A guide to multi-omics data collection and integration for translational medicine
    Athieniti, Efi
    Spyrou, George M.
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 134 - 149
  • [10] Multi-omics Multi-scale Big Data Analytics for Cancer Genomics
    Agarwal, Mahima
    Adhil, Mohamood
    Talukder, Asoke K.
    BIG DATA ANALYTICS, BDA 2015, 2015, 9498 : 228 - 243