UNIVERSALLY GENERIC FINITELY GENERATED ORDERED ABELIAN-GROUPS

被引:0
作者
DAHN, BI
LENSKI, W
机构
[1] HUMBOLDT UNIV BERLIN, INST REINE MATH, D-10099 BERLIN, GERMANY
[2] UNIV KAISERSLAUTERN, FACHBEREICH INFORMAT, D-67653 KAISERSLAUTERN, GERMANY
来源
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS | 1994年 / 11卷 / 01期
关键词
FINITELY GENERATED ORDERED ABELIAN GROUPS; FORCING; STRUCTURE OF GENERIC MODELS; AXIOMATIZATION;
D O I
10.1007/BF01462231
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that a finitely generated ordered Abelian group is generic if and only if it is superdiscrete, i.e., each homomorphic image is discretely ordered. The forcing concept uses universal sentences as forcing conditions.
引用
收藏
页码:77 / 84
页数:8
相关论文
共 7 条
  • [1] Dahn B. I., 1988, Algebraic and Logic Programming. International Workshop Proceedings, P119
  • [2] DAHN BI, 1988, 6TH P EAST C MOD THE, P33
  • [3] DAHN BI, 1989, 7TH P EAST C MOD THE, P75
  • [4] EMBEDDING THEOREMS AND GENERALIZED DISCRETE ORDERED ABELIAN-GROUPS
    HILL, P
    MOTT, JL
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 175 (448) : 283 - 297
  • [5] WEISPFENNING V, 1986, ALGEBRA ORDER, P113
  • [6] Weispfenning V., 1990, ARCH MATH LOGIC, V29, P237
  • [7] YAHN B, 1989, 7TH P EAST C MOD THE, P67