EXISTENCE RESULTS FOR NONLINEAR SECOND-ORDER q-DIFFERENCE EQUATIONS WITH q-INTEGRAL BOUNDARY CONDITIONS

被引:9
作者
Saengngammongkhol, Thamonwan [1 ]
Kaewwisetkul, Bunjong [1 ]
Sitthiwirattham, Thanin [2 ]
机构
[1] Rajamangala Univ Technol, Dept Math, Fac Liberal Arts, Rattanakosin, Nakhon Pathom, Thailand
[2] King Mongkuts Univ Technol North Bangkok, Dept Math, Fac Appl Sci, Bangkok, Thailand
来源
DIFFERENTIAL EQUATIONS & APPLICATIONS | 2015年 / 7卷 / 03期
关键词
existence; q-derivative; q-integral; q-difference equation;
D O I
10.7153/dea-07-17
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present some new existence and uniqueness results for the q-integral boundary value problem of nonlinear q-difference equation. Our results are based on Banach's contraction principle and Krasnowselskii's fixed point theorem. An example is given to illustrate the advantage of our results.
引用
收藏
页码:303 / 311
页数:9
相关论文
共 20 条
[1]  
Adams C, 1929, T AM MATH SOC B T AM MATH SOC B, V30, P195
[2]  
Ahmad B., 2012, COMMU APPL NONLINEAR, V19, P59
[3]   On nonlocal boundary value problems of nonlinear q-difference equations [J].
Ahmad, Bashir ;
Nieto, Juan J. .
ADVANCES IN DIFFERENCE EQUATIONS, 2012, :1-10
[4]  
Ahmad B, 2011, ELECTRON J QUAL THEO, P1
[5]   Boundary Value Problems for q-Difference Inclusions [J].
Ahmad, Bashir ;
Ntouyas, Sotiris K. .
ABSTRACT AND APPLIED ANALYSIS, 2011,
[6]   Variational q-calculus [J].
Bangerezako, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 289 (02) :650-665
[7]   The general theory of linear q-difference equations [J].
Carmichael, RD .
AMERICAN JOURNAL OF MATHEMATICS, 1912, 34 :147-168
[8]   Second order q-difference equations solvable by factorization method [J].
Dobrogowska, Alina ;
Odzijewicz, Anatol .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 193 (01) :319-346
[9]  
El-Shahed M, 2010, P AM MATH SOC, V138, P1733
[10]  
Ernst T., 1999, UPPSALA U REPORT DEP, V25, P1