An Effective Intrusion Detection System Based onMulti-layers Mining Methods

被引:1
作者
Yao, Ming [1 ]
机构
[1] Baotou Vocat & Tech Coll, Baotou, Peoples R China
来源
INTERNATIONAL JOURNAL OF SECURITY AND ITS APPLICATIONS | 2014年 / 8卷 / 05期
关键词
Network security; Intrusion detection; Feature selection; Classification; Clustering; Dempster-Shafertheory;
D O I
10.14257/ijsia.2014.8.5.28
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a multi-layer selection and mining methods for effective intrusion detection, which utilize feature selection, classification, clustering and evidence theory for decision making. In the experiments, DARPA KDD-99 intrusion detection data set is used for evaluation. It shows that our proposed classifier not only classifies and separates the normal and abnormal data, but also reduces false positive and false negative besides detecting all four kinds of attacks.
引用
收藏
页码:311 / 321
页数:11
相关论文
共 21 条
[1]  
Anderson P., 1980, COMPUTER SECURITY TH
[2]  
[Anonymous], 1972, NEURAL NETWORKS, V5, P927
[3]  
Borji A, 2007, LECT NOTES COMPUT SC, V4846, P254
[4]  
Brodley C., 1996, P AAAI 96 WORKSH INT, P8
[5]   Application of SVM and ANN for intrusion detection [J].
Chen, WH ;
Hsu, SH ;
Shen, HP .
COMPUTERS & OPERATIONS RESEARCH, 2005, 32 (10) :2617-2634
[6]   Ensemble of Machine Learning Algorithms for Intrusion Detection [J].
Chou, Te-Shun ;
Fan, Jeffrey ;
Fan, Sharon ;
Makki, Kia .
2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 2009, :3976-+
[7]   Hybrid Classifier Systems for Intrusion Detection [J].
Chou, Te-Shun ;
Chou, Tsung-Nan .
2009 7TH ANNUAL COMMUNICATION NETWORKS AND SERVICES RESEARCH CONFERENCE, 2009, :286-+
[8]  
DeLooze LL, 2006, IEEE IJCNN, P2121
[9]   AN INTRUSION-DETECTION MODEL [J].
DENNING, DE .
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 1987, 13 (02) :222-232
[10]  
Denoeux T., 2002, IEEE T SYST MAN CYB, V25, P804