ANALYSIS OF AN ADAPTIVE-CONTROL SCHEME FOR A PARTIALLY OBSERVED CONTROLLED MARKOV-CHAIN

被引:23
作者
FERNANDEZGAUCHERAND, E
ARAPOSTATHIS, A
MARCUS, SI
机构
[1] UNIV TEXAS, DEPT ELECT & COMP ENGN, AUSTIN, TX 78712 USA
[2] UNIV MARYLAND, DEPT ELECT ENGN, COLL PK, MD 20742 USA
[3] UNIV MARYLAND, SYST RES CTR, COLL PK, MD 20742 USA
关键词
D O I
10.1109/9.222316
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider an adaptive finite state controlled Markov chain with partial state information, motivated by a class of replacement problems. We present parameter estimation techniques based on the information available after actions that reset the state to a known value are taken. We prove that the parameter estimates converge w.p.1 to the true (unknown) parameter, under the feedback structure induced by a certainty equivalent adaptive policy. We also show that the adaptive policy is self-optimizing in a long-run average sense, for any (measurable) sequence of parameter estimates converging w.p.1 to the true parameter.
引用
收藏
页码:987 / 993
页数:7
相关论文
共 18 条