ESTIMATION OF PR(X-LESS-THAN-Y) IN THE EXPONENTIAL CASE WITH COMMON LOCATION PARAMETER

被引:21
作者
BAI, DS [1 ]
HONG, YW [1 ]
机构
[1] KOREA ADV INST SCI & TECHNOL,DEPT IND ENGN,SEOUL 131,SOUTH KOREA
关键词
STRESS-STRENGTH MODEL; MIXED BETA-DISTRIBUTION; UNIFORMLY MINIMUM VARIANCE UNBIASED ESTIMATOR; ASYMPTOTIC DISTRIBUTIONS; ASYMPTOTIC EQUIVALENCE;
D O I
10.1080/03610929208830777
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers the problem of estimating the probability P = Pr(X < Y) when X and Y are independent exponential random variables with unequal scale parameters and a common location parameter. Uniformly minimum variance unbiased estimator of P is obtained. The asymptotic distribution of the maximum likelihood estimator is obtained and then the asymptotic equivalence of the two estimators is established. Performance of the two estimators for moderate sample sizes is studied by Monte Carlo simulation. An approximate interval estimator is also obtained.
引用
收藏
页码:269 / 282
页数:14
相关论文
共 16 条
[1]  
Abramowitz M., 1965, HDB MATH FUNCTIONS
[2]   ESTIMATION OF PR[Y LESS-THAN X] FOR TRUNCATION PARAMETER DISTRIBUTIONS [J].
BEG, MA .
COMMUNICATIONS IN STATISTICS PART A-THEORY AND METHODS, 1980, 9 (03) :327-345
[3]   ESTIMATION OF RELIABILITY IN A MULTICOMPONENT STRESS-STRENGTH MODEL [J].
BHATTACHARYYA, GK ;
JOHNSON, RA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1974, 69 (348) :966-970
[4]   ESTIMATING THE COMMON LOCATION PARAMETER OF EXPONENTIAL-DISTRIBUTIONS WITH CENSORED SAMPLES [J].
CHIOU, WJ ;
COHEN, A .
NAVAL RESEARCH LOGISTICS, 1984, 31 (03) :475-482
[5]  
Everitt B, 2013, FINITE MIXTURE DISTR
[6]  
Ghosh M, 1984, SANKHYA A, V46, P383
[7]   ESTIMATION OF P(YP GREATER-THAN MAX(Y1, Y2, ..., YP-1)) IN THE EXPONENTIAL CASE [J].
GUPTA, RD ;
GUPTA, RC .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1988, 17 (03) :911-924
[8]   NOTE ON ESTIMATION OF PR[Y LESS-THAN X] IN EXPONENTIAL CASE [J].
JOHNSON, NL .
TECHNOMETRICS, 1975, 17 (03) :393-393
[9]   EFFICIENT ESTIMATION OF P(Y LESS THAN X) IN EXPONENTIAL CASE [J].
KELLEY, GD ;
KELLEY, JA ;
SCHUCANY, WR .
TECHNOMETRICS, 1976, 18 (03) :359-360
[10]   CONDITIONAL DISTRIBUTION OF ORDER-STATISTICS AND DISTRIBUTION OF REDUCED ITH ORDER STATISTIC OF EXPONENTIAL MODEL [J].
LAURENT, AG .
ANNALS OF MATHEMATICAL STATISTICS, 1963, 34 (02) :652-&