SOME INEQUALITIES OF HERMITE-HADAMARD TYPE FOR GA-CONVEX FUNCTIONS WITH APPLICATIONS TO MEANS

被引:60
作者
Zhang, Tian-Yu [1 ]
Ji, Ai-Ping [1 ]
Qi, Feng [2 ]
机构
[1] Inner Mongolia Univ Nationalities, Coll Math, Tongliao City 028043, Inner Mongolia, Peoples R China
[2] Tianjin Polytech Univ, Coll Sci, Dept Math, Tianjin 300387, Peoples R China
来源
MATEMATICHE | 2013年 / 68卷 / 01期
关键词
Hermite-Hadamard's integral inequality; Convex function; GA-convex function; Holder's inequality; Mean;
D O I
10.4418/2013.68.1.17
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, the authors, by Holder's integral inequality, establish some Hermite-Hadamard type integral inequalities for GA-convex functions and apply these inequalities to construct several inequalities for special means.
引用
收藏
页码:229 / 239
页数:11
相关论文
共 23 条
[1]   Hermite-Hadamard type inequalities for the m- and (α, m)-logarithmically convex functions [J].
Bai, Rui-Fang ;
Qi, Feng ;
Xi, Bo-Yan .
FILOMAT, 2013, 27 (01) :1-7
[2]   Some Hermite-Hadamard type inequalities for n-time differentiable (α, m)-convex functions [J].
Bai, Shu-Ping ;
Wang, Shu-Hong ;
Qi, Feng .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
[3]  
Bullen P.S., 2003, MATH ITS APPL, V560
[4]  
Chun L., 2012, APPL MATH, V3, P1680, DOI DOI 10.4236/am.2012.311232
[5]   Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula [J].
Dragomir, SS ;
Agarwal, RP .
APPLIED MATHEMATICS LETTERS, 1998, 11 (05) :91-95
[6]  
Hudzik H, 1994, AEQUATIONES MATH, V48, P100, DOI DOI 10.1007/BF01837981
[7]  
Jiang W. D., 2012, ANALYSIS-UK, V32, P209, DOI [10.1524/anly.2012.1161, DOI 10.1524/ANLY.2012.1161]
[8]   Hadamard-type inequalities for s-convex functions [J].
Kirmaci, U. S. ;
Bakula, M. Klaricic ;
Ozdemir, M. E. ;
Pecaric, J. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 193 (01) :26-35
[9]   Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula [J].
Kirmaci, US .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 147 (01) :137-146
[10]   Convexity according to the geometric mean [J].
Niculescu, CP .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2000, 3 (02) :155-167