A STRONG LAW FOR B-VALUED ARRAYS

被引:14
作者
LI, DL
RAO, MB
TOMKINS, RJ
机构
[1] YORK UNIV,DEPT MATH & STAT,N YORK,ON M3J 1P3,CANADA
[2] N DAKOTA STATE UNIV,DEPT STAT,FARGO,ND 58105
关键词
ALMOST SURE LIMIT; BANACH SPACE; CLUSTER SET; THE LAW OF THE ITERATED LOGARITHM; STRONG LAW OF LARGE NUMBERS;
D O I
10.2307/2160683
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (B, parallel to .parallel to) be a real separable Banach space and {X(n,k); n greater than or equal to 1, 1 less than or equal to k less than or equal to n} a triangular array of lid B-valued random variables. Set S(n) = Sigma(k=1)(n) X(n,k),n greater than or equal to 1, and Log t = log max {e, t}, t is an element of R. In this paper, we characterize the limit behavior of S(n)/root 2nLogn, n greater than or equal to 1. As an application of our result, we resolve an open problem posed by Hu and Weber (1992), The:case of row-wise independent arrays is also dealt with.
引用
收藏
页码:3205 / 3212
页数:8
相关论文
共 12 条
[2]  
Chen X., 1991, CHINESE J APPL PROBA, V7, P24
[3]  
DEACOSTA A, 1992, T AM MATH SOC, V329, P357
[4]   STRONG LAWS OF LARGE NUMBERS FOR ARRAYS OF ROWWISE INDEPENDENT RANDOM-VARIABLES [J].
HU, TC ;
MORICZ, F ;
TAYLOR, RL .
ACTA MATHEMATICA HUNGARICA, 1989, 54 (1-2) :153-162
[5]   ON THE RATE OF CONVERGENCE IN THE STRONG LAW OF LARGE NUMBERS FOR ARRAYS [J].
HU, TC ;
WEBER, NC .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1992, 45 (03) :479-482
[6]   WEAK CONSISTENCY OF LEAST-SQUARES ESTIMATORS IN LINEAR-MODELS [J].
KAFFES, D ;
RAO, MB .
JOURNAL OF MULTIVARIATE ANALYSIS, 1982, 12 (02) :186-198
[7]   STRONG CONVERGENCE THEOREM FOR BANACH-SPACE VALUED RANDOM-VARIABLES [J].
KUELBS, J .
ANNALS OF PROBABILITY, 1976, 4 (05) :744-771
[8]   LIMIT THEOREMS FOR DELAYED SUMS [J].
LAI, TL .
ANNALS OF PROBABILITY, 1974, 2 (03) :432-440
[9]  
LEDOUX M, 1992, ANN I H POINCARE-PR, V28, P267
[10]  
LI D, 1992, AUG P SPEC YEAR PROB, P100