FRACTAL CALCULUS ON [0,1]

被引:24
作者
GIONA, M
机构
[1] Dipartimento di Ingegneria Chimica, Università di Cagliari, 09123, Piazza d'Armi
关键词
D O I
10.1016/0960-0779(94)00227-H
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Ordinary differential equations are generalized to fractal supports with regular or multifractal properties. This can be done by considering the corresponding integral equations with respect to the measure. Closed form solutions of simple differential equations (giving rise to exponential, sine and cosine functions) on fractals are presented and the generalization to arbitrary differential equations discussed. Some applications of this formalism are presented in connection with multifractality.
引用
收藏
页码:987 / 1000
页数:14
相关论文
共 34 条
[1]   DIMENSION OF A QUANTUM-MECHANICAL PATH [J].
ABBOTT, LF ;
WISE, MB .
AMERICAN JOURNAL OF PHYSICS, 1981, 49 (01) :37-39
[2]  
ALEXANDER S, 1982, J PHYS LETT-PARIS, V43, pL625, DOI 10.1051/jphyslet:019820043017062500
[3]  
BARNSLEY MF, 1983, FRACTAL IMAGE COMPRE
[4]  
Barnsley Michael F, 2014, FRACTALS EVERYWHERE
[5]   STABLE RECOVERY OF FRACTAL MEASURES BY POLYNOMIAL SAMPLING [J].
BESSIS, D ;
DEMKO, S .
PHYSICA D, 1991, 47 (03) :427-438
[6]   SOLUTIONS TO THE SCHRODINGER-EQUATION ON SOME FRACTAL LATTICES [J].
DOMANY, E ;
ALEXANDER, S ;
BENSIMON, D ;
KADANOFF, LP .
PHYSICAL REVIEW B, 1983, 28 (06) :3110-3123
[7]  
DREMIN IM, 1994, FRACTALS NATURAL APP, P101
[8]  
El Naschie M. S., 1992, Chaos, Solitons and Fractals, V2, P437, DOI 10.1016/0960-0779(92)90018-I
[9]   ON CERTAIN INFINITE-DIMENSIONAL CANTOR SETS AND THE SCHRODINGER WAVE [J].
ELNASCHIE, MS .
CHAOS SOLITONS & FRACTALS, 1993, 3 (01) :89-98
[10]  
ELNASCHIE MS, 1991, CHAOS SOLITON FRACT, V1, P485