MAXIMUM-ENTROPY IN THE FINITE STIELTJES AND HAMBURGER MOMENT PROBLEM

被引:18
作者
FRONTINI, M
TAGLIANI, A
机构
[1] Dipartimento di Matematica, Politecnico di Milano, 23100 Milano, Piazza L. da Vinci
关键词
D O I
10.1063/1.530640
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A necessary and sufficient condition for the existence of the maximum entropy (ME) function, defined in an infinite or semiinfinite interval, is provided. The conclusions reached show that, except in a few particular cases, the necessary and sufficient conditions for the existence of maximum entropy function are identical to the conditions for the solution of the moment problem when the first M + 1 moments are assigned. Even if the conclusions reached are very similar to the Hausdorff case, the specificity of the Hamburger and Stieltjes cases demands a different handling. A sufficient condition for the entropy convergence of the resulting sequence of maximum entropy estimators to the entropy of the recovering function is also provided. © 1994 American Institute of Physics.
引用
收藏
页码:6748 / 6756
页数:9
相关论文
共 16 条
[1]  
AHIEZER NI, 1962, SOME QUESTIONS THEOR
[2]  
ANTOLIN J, 1994, IN PRESS PHYS REV A
[3]  
Forte B., 1989, REND MAT 7, V9, P689
[4]  
FRONTINI M, 1994, UNPUB J MATH PHYS
[5]  
Karlin S., 1953, GEOMETRY MOMENT SPAC
[6]  
KENDALL MG, 1969, ADV THEORY STATISTIC, V1
[7]   THE EXISTENCE CONDITIONS FOR MAXIMUM-ENTROPY DISTRIBUTIONS, HAVING PRESCRIBED THE 1ST 3 MOMENTS [J].
KOCISZEWSKI, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (14) :L823-L827
[8]  
KREIN MG, 1977, MARKOV MOMENT PROBEM
[9]  
KULLBACK S, 1962, INFORMATION THEORY S
[10]   MAXIMUM-ENTROPY IN THE PROBLEM OF MOMENTS [J].
MEAD, LR ;
PAPANICOLAOU, N .
JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (08) :2404-2417