THE FIXITY OF PERMUTATION-GROUPS

被引:11
作者
SAXL, J [1 ]
SHALEV, A [1 ]
机构
[1] HEBREW UNIV JERUSALEM,INST MATH,IL-91904 JERUSALEM,ISRAEL
关键词
D O I
10.1006/jabr.1995.1171
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The fixity of a finite permutation group G is the maximal number of fixed points of a non-trivial element of G. We analyze the structure of non-regular permutation groups G with given fixity f. We show that if G is transitive and nilpotent, then it has a subgroup whose index and nilpotency class are both f-bounded. We also show that if G is primitive, then either it has a soluble subgroup of f-bounded index and derived length at most 4, or F*(G) is PSL(2, q) or Sz(q) in the natural permutation representations of degree q + 1, q(2) + 1 respectively. (C) 1995 Academic Press, Inc.
引用
收藏
页码:1122 / 1140
页数:19
相关论文
共 28 条
[1]  
Aschbacher M., Seitz G.M., Involutions in Chevalley groups over fields of even order, Nagoya Math. J, 63, pp. 1-91, (1976)
[2]  
Blackburn N., On a special class of p-groups, Acta Math, 100, pp. 49-92, (1958)
[3]  
Brauer R., Fowler K.A., On groups of even order, Ann. Math. (2), 62, pp. 565-583, (1955)
[4]  
Buekenhout F., Transitive groups in which involutions fix one or three points, J. Algebra, 23, pp. 438-451, (1972)
[5]  
Buekenhout F., Rowlinson P., On (1, 4)-groups, II, J. London Math. Soc. (2), 8, pp. 507-513, (1974)
[6]  
Buekenhout F., Rowunson P., On (1, 4)-groups, III, J. London Math. Soc. (2), 14, pp. 487-495, (1976)
[7]  
Dixon J.D., The Fitting subgroup of a solvable linear group, J. Austral. Math. Soc, 7, pp. 417-424, (1967)
[8]  
Feit W., Thompson J.G., Solvability of groups of odd order, Pacific J. Math, 13, pp. 775-1029, (1963)
[9]  
Huppert B., Blackburn N., Finite Groups, II, (1982)
[10]  
Huppert B., Blackburn N., Finite Groups, III, (1982)