A 4TH HUMAN MEF2 TRANSCRIPTION FACTOR, HMEF2D, IS AN EARLY MARKER OF THE MYOGENIC LINEAGE

被引:0
作者
BREITBART, RE
LIANG, CS
SMOOT, LB
LAHERU, DA
MAHDAVI, V
NADALGINARD, B
机构
[1] HARVARD UNIV,SCH MED,DEPT PEDIAT,BOSTON,MA 02115
[2] HARVARD UNIV,CHILDRENS HOSP,SCH MED,DEPT CARDIOL,BOSTON,MA 02115
[3] HARVARD UNIV,SCH MED,DEPT CELLULAR & MOLEC PHYSIOL,BOSTON,MA 02115
来源
DEVELOPMENT | 1993年 / 118卷 / 04期
关键词
MEF2; MYOGENESIS; COMMITMENT; TRANSCRIPTION FACTORS; MUSCLE-SPECIFIC GENE REGULATION;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The transition from multipotent mesodermal precursor to committed myoblast and its differentiation into a mature myocyte involve molecular events that enable the cell to activate muscle-specific genes. Among the participants in this process is the myocyte-specific enhancer factor 2 (MEF2) family of tissue-restricted transcription factors. These factors, which share a highly conserved DNA-binding domain including a MADS box, are essential for the expression of multiple muscle genes with cognate target MEF2 sites in cis. We report here a new human MEF2 factor, hMEF2D, which is unique among the members of this family in that it is present not only in myotubes but also in undifferentiated myoblasts, even before the appearance of myogenin. hMEF2D comprises several alternatively spliced products of a single gene, one of which is the human homolog of the Xenopus SRF-related factor SL-1. Like its relatives, cloned hMEF2D is capable of activating transcription via sequence-specific binding to the MEF2 site, recapitulating endogenous tissue-specific MEF2 activity. Indeed, while MEF2D mRNAs are ubiquitous, the protein is highly restricted to those cell types that contain this activity, implicating posttranscriptional mechanisms in the regulation of MEF2D expression. Alternative splicing may be important in this process: two alternative MEF2D domains, at least one of which is specifically included during myogenic differentiation, also correlate precisely with endogenous MEF2 activity. These findings provide compelling evidence that MEF2D is an integral link in the regulatory network for muscle gene expression. Its presence in undifferentiated myoblasts further suggests that it may be a mediator of commitment in the myogenic lineage.
引用
收藏
页码:1095 / 1106
页数:12
相关论文
共 43 条
[1]   COMPLEMENTARY-DNA SEQUENCING - EXPRESSED SEQUENCE TAGS AND HUMAN GENOME PROJECT [J].
ADAMS, MD ;
KELLEY, JM ;
GOCAYNE, JD ;
DUBNICK, M ;
POLYMEROPOULOS, MH ;
XIAO, H ;
MERRIL, CR ;
WU, A ;
OLDE, B ;
MORENO, RF ;
KERLAVAGE, AR ;
MCCOMBIE, WR ;
VENTER, JC .
SCIENCE, 1991, 252 (5013) :1651-1656
[2]   IMMUNOCHEMICAL ANALYSIS OF MYOSIN HEAVY-CHAIN DURING AVIAN MYOGENESIS INVIVO AND INVITRO [J].
BADER, D ;
MASAKI, T ;
FISCHMAN, DA .
JOURNAL OF CELL BIOLOGY, 1982, 95 (03) :763-770
[3]   COMPLEMENTARY FLORAL HOMEOTIC PHENOTYPES RESULT FROM OPPOSITE ORIENTATIONS OF A TRANSPOSON AT THE PLENA-LOCUS OF ANTIRRHINUM [J].
BRADLEY, D ;
CARPENTER, R ;
SOMMER, H ;
HARTLEY, N ;
COEN, E .
CELL, 1993, 72 (01) :85-95
[4]   PROMOTER UPSTREAM ELEMENTS OF THE CHICKEN CARDIAC MYOSIN LIGHT-CHAIN 2-A GENE INTERACT WITH TRANS-ACTING REGULATORY FACTORS FOR MUSCLE-SPECIFIC TRANSCRIPTION [J].
BRAUN, T ;
TANNICH, E ;
BUSCHHAUSENDENKER, G ;
ARNOLD, HH .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (06) :2513-2525
[5]   MUSCLE-SPECIFIC EXPRESSION OF SRF-RELATED GENES IN THE EARLY EMBRYO OF XENOPUS-LAEVIS [J].
CHAMBERS, AE ;
KOTECHA, S ;
TOWERS, N ;
MOHUN, TJ .
EMBO JOURNAL, 1992, 11 (13) :4981-4991
[6]   BODY-WALL MUSCLE FORMATION IN CAENORHABDITIS-ELEGANS EMBRYOS THAT LACK THE MYOD HOMOLOG HLH-1 [J].
CHEN, L ;
KRAUSE, M ;
DRAPER, B ;
WEINTRAUB, H ;
FIRE, A .
SCIENCE, 1992, 256 (5054) :240-243
[7]   RELEASE OF ARACHIDONATE FROM MEMBRANE PHOSPHOLIPIDS IN CULTURED NEONATAL RAT MYOCARDIAL-CELLS DURING ADENOSINE-TRIPHOSPHATE DEPLETION - CORRELATION WITH THE PROGRESSION OF CELL INJURY [J].
CHIEN, KR ;
SEN, A ;
REYNOLDS, R ;
CHANG, A ;
KIM, Y ;
GUNN, MD ;
BUJA, LM ;
WILLERSON, JT .
JOURNAL OF CLINICAL INVESTIGATION, 1985, 75 (06) :1770-1780
[8]   ANALYSIS OF SP1 INVIVO REVEALS MULTIPLE TRANSCRIPTIONAL DOMAINS, INCLUDING A NOVEL GLUTAMINE-RICH ACTIVATION MOTIF [J].
COUREY, AJ ;
TJIAN, R .
CELL, 1988, 55 (05) :887-898
[9]   MYOGENIN INDUCES THE MYOCYTE-SPECIFIC ENHANCER BINDING-FACTOR MEF-2 INDEPENDENTLY OF OTHER MUSCLE-SPECIFIC GENE-PRODUCTS [J].
CSERJESI, P ;
OLSON, EN .
MOLECULAR AND CELLULAR BIOLOGY, 1991, 11 (10) :4854-4862
[10]  
CSERJESI P, 1992, DEVELOPMENT, V115, P1087