RACAH-WIGNER CALCULUS FOR THE SUPER-ROTATION ALGEBRA .1.

被引:17
作者
MINNAERT, P
MOZRZYMAS, M
机构
[1] Laboratoire de Physique Théorique, Université de Bordeaux I
[2] Institute of Theoretical Physics, University of Wroclaw, 50-205 Wroclaw
关键词
D O I
10.1063/1.529683
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The symmetry properties and the pseudo-orthogonality relations of the super-rotation Clebsh-Gordan coefficients for the tensor product of two irreducible representations of the super-rotation algebra are derived. The symmetric super-rotation 3-j symbol and the symmetric and invariant super-rotation 6-j symbol are defined, their basic properties are described, and their relations to the usual 3-j and 6-j symbols are given.
引用
收藏
页码:1582 / 1593
页数:12
相关论文
共 13 条
[1]   THE GROUP WITH GRASSMANN STRUCTURE UOSP(1.2) [J].
BEREZIN, FA ;
TOLSTOY, VN .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 78 (03) :409-428
[2]  
BIEDENHARN LC, 1981, RACAH WIGNER ALGEBRA, V9, P415
[3]  
Edmonds, 1957, ANGULAR MOMENTUM QUA
[4]  
Judd B.R., 1963, OPERATOR TECHNIQUES
[5]   LINEAR REALIZATIONS OF THE SUPERROTATION AND SUPER-LORENTZ SYMMETRIES .1. [J].
KOUADIK, S ;
MINNAERT, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (11) :2708-2713
[6]   ALGEBRAIC STRUCTURE OF TENSOR SUPEROPERATORS FOR THE SUPER-ROTATION ALGEBRA .2. [J].
MINNAERT, P ;
MOZRZYMAS, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (05) :1594-1600
[7]   SEMISIMPLE GRADED LIE-ALGEBRAS [J].
PAIS, A ;
RITTENBERG, V .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (10) :2062-2073
[8]  
RACAH G, 1951, UNPUB
[9]   GRADED LIE-ALGEBRAS - GENERALIZATION OF HERMITIAN REPRESENTATIONS [J].
SCHEUNERT, M ;
NAHM, W ;
RITTENBERG, V .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (01) :146-154
[10]   IRREDUCIBLE REPRESENTATIONS OF OSP(2,1) AND SPL(2,1) GRADED LIE-ALGEBRAS [J].
SCHEUNERT, M ;
NAHM, W ;
RITTENBERG, V .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (01) :155-162