FINITE-SIZE EFFECTS AT ASYMMETRIC 1ST-ORDER PHASE-TRANSITIONS

被引:141
作者
BORGS, C
KOTECKY, R
机构
[1] CHARLES UNIV, DEPT MATH PHYS, PRAGUE 8, CZECHOSLOVAKIA
[2] CHARLES UNIV, CTR THEORET STUDIES, PRAGUE 1, CZECHOSLOVAKIA
关键词
D O I
10.1103/PhysRevLett.68.1734
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a rigorous description of finite-size effects for a large class of models with an asymmetric first-order transition, assuming that all phases contributing to the transition have a finite correlation length. If the model describes the coexistence of two phases, it is shown that, at sufficiently low temperatures, the shift of the transition point due to finite-size effects in a volume L(d) with periodic boundary conditions is O(L-2d), in contrast to certain claims in the literature. We also discuss different ways to determine the transition point from finite-size data, which involve only exponentially small systematic errors in L.
引用
收藏
页码:1734 / 1737
页数:4
相关论文
共 20 条
[12]   THEORY OF CONDENSATION POINT [J].
LANGER, JS .
ANNALS OF PHYSICS, 1967, 41 (01) :108-+
[13]   NEW NUMERICAL-METHOD TO STUDY PHASE-TRANSITIONS [J].
LEE, JY ;
KOSTERLITZ, JM .
PHYSICAL REVIEW LETTERS, 1990, 65 (02) :137-140
[14]   PHASE-DIAGRAMS OF CLASSICAL LATTICE SYSTEMS [J].
PIROGOV, SA ;
SINAI, YG .
THEORETICAL AND MATHEMATICAL PHYSICS, 1975, 25 (03) :1185-1192
[15]   PHASE-DIAGRAMS OF CLASSICAL LATTICE SYSTEMS CONTINUATION [J].
PIROGOV, SA ;
SINAI, YG .
THEORETICAL AND MATHEMATICAL PHYSICS, 1976, 26 (01) :39-49
[16]   FINITE-SIZE EFFECTS AT 1ST-ORDER TRANSITIONS [J].
PRIVMAN, V ;
FISHER, ME .
JOURNAL OF STATISTICAL PHYSICS, 1983, 33 (02) :385-417
[17]   NONSYMMETRIC 1ST-ORDER TRANSITIONS - FINITE-SIZE SCALING AND TESTS FOR INFINITE-RANGE MODELS [J].
PRIVMAN, V ;
RUDNICK, J .
JOURNAL OF STATISTICAL PHYSICS, 1990, 60 (5-6) :551-560
[18]  
Privman V., 1990, FINITE SIZE SCALING
[19]   THE POTTS-MODEL [J].
WU, FY .
REVIEWS OF MODERN PHYSICS, 1982, 54 (01) :235-268
[20]   AN ALTERNATE VERSION OF PIROGOV-SINAI THEORY [J].
ZAHRADNIK, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 93 (04) :559-581