CANTORI FOR SYMPLECTIC MAPS NEAR THE ANTI-INTEGRABLE LIMIT

被引:49
|
作者
MACKAY, RS [1 ]
MEISS, JD [1 ]
机构
[1] UNIV COLORADO,BOULDER,CO 80309
关键词
D O I
10.1088/0951-7715/5/1/006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of 'cantori' of all incommensurate rotation vectors, for symplectic maps of arbitrary dimension near enough to any non-degenerate anti-integrable limit, and derive an asymptotic form for them. Cantori are invariant Cantor sets which can be though of as remnants of KAM tori.
引用
收藏
页码:149 / 160
页数:12
相关论文
共 50 条
  • [1] The anti-integrable limit
    Bolotin, S. V.
    Treschev, D. V.
    RUSSIAN MATHEMATICAL SURVEYS, 2015, 70 (06) : 975 - 1030
  • [2] Multibump orbits near the anti-integrable limit for Lagrangian systems
    Bolotin, S
    MacKay, R
    NONLINEARITY, 1997, 10 (05) : 1015 - 1029
  • [3] Chaotic orbits for differentiable maps near anti-integrable limits
    Chen, Te-Hsuan
    Lin, Wen-Wei
    Peng, Chen-Chang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 435 (01) : 889 - 916
  • [4] Drift by coupling to an anti-integrable limit
    Easton, RW
    Meiss, JD
    Roberts, G
    PHYSICA D, 2001, 156 (3-4): : 201 - 218
  • [5] CANTORI FOR SYMPLECTIC MAPS
    CHEN, Q
    MACKAY, RS
    MEISS, JD
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (21): : L1093 - L1100
  • [6] Bernoulli shift for second order recurrence relations near the anti-integrable limit
    Chen, YC
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2005, 5 (03): : 587 - 598
  • [7] Computing periodic orbits using the anti-integrable limit
    Sterling, D
    Meiss, JD
    PHYSICS LETTERS A, 1998, 241 (1-2) : 46 - 52
  • [8] Computing periodic orbits using the anti-integrable limit
    Sterling, D.
    Meiss, J. D.
    Physics Letters. Section A: General, Atomic and Solid State Physics, 241 (01):
  • [9] NEURAL NETWORKS, LATTICE INSTANTONS, AND THE ANTI-INTEGRABLE LIMIT
    BRESSLOFF, PC
    PHYSICAL REVIEW LETTERS, 1995, 75 (05) : 962 - 965
  • [10] Abrupt bifurcations in chaotic scattering: view from the anti-integrable limit
    Baesens, Claude
    Chen, Yi-Chiuan
    MacKay, Robert S.
    NONLINEARITY, 2013, 26 (09) : 2703 - 2730