CANTORI FOR SYMPLECTIC MAPS NEAR THE ANTI-INTEGRABLE LIMIT

被引:51
作者
MACKAY, RS [1 ]
MEISS, JD [1 ]
机构
[1] UNIV COLORADO,BOULDER,CO 80309
关键词
D O I
10.1088/0951-7715/5/1/006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of 'cantori' of all incommensurate rotation vectors, for symplectic maps of arbitrary dimension near enough to any non-degenerate anti-integrable limit, and derive an asymptotic form for them. Cantori are invariant Cantor sets which can be though of as remnants of KAM tori.
引用
收藏
页码:149 / 160
页数:12
相关论文
共 41 条
[1]  
ARNOLD VI, 1986, ERGODIC PROBLEMS CLA
[2]  
Aubry S., 1978, Solitons and Condensed Matter Physics, P264
[3]   CHAOTIC TRAJECTORIES IN THE STANDARD MAP - THE CONCEPT OF ANTIINTEGRABILITY [J].
AUBRY, S ;
ABRAMOVICI, G .
PHYSICA D-NONLINEAR PHENOMENA, 1990, 43 (2-3) :199-219
[4]   EXACT MODELS WITH A COMPLETE DEVILS STAIRCASE [J].
AUBRY, S .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1983, 16 (13) :2497-2508
[5]   THE DISCRETE FRENKEL-KONTOROVA MODEL AND ITS EXTENSIONS .1. EXACT RESULTS FOR THE GROUND-STATES [J].
AUBRY, S ;
LEDAERON, PY .
PHYSICA D-NONLINEAR PHENOMENA, 1983, 8 (03) :381-422
[6]  
AUBRY S, 1991, UNPUB PHYSICA D
[7]  
Aubry S, 1980, RIEMANN PROBLEM COMP, V925
[8]  
AUBRY S, 1991, IN PRESS TWIST MAPPI
[9]  
AUBRY S, IN PRESS PHYSICA D
[10]  
BANGERT V, 1988, MATHER SETS TWIST MA, V1, P1