RIGOROUS BOUNDS ON THE STORAGE CAPACITY OF THE DILUTE HOPFIELD MODEL

被引:19
|
作者
BOVIER, A
GAYRARD, V
机构
[1] RUHR UNIV BOCHUM,DUSSELDORF INST MATH,W-4630 BOCHUM,GERMANY
[2] CNRS,CTR PHYS THEOR,F-13288 MARSEILLE 9,FRANCE
[3] RUTGERS STATE UNIV,CTR MATH SCI RES,NEW BRUNSWICK,NJ 08903
关键词
HOPFIELD MODEL; BOND DILUTION; MEMORY CAPACITY;
D O I
10.1007/BF01050427
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a neural network model consisting of N neurons where a dendritic connection between each pair of neurons exists with probability p and is absent with probability 1-p. For the Hopfield Hamiltonian on such a network, we prove that if p greater-than-or-equal-to c[(1n N)/N]1/2, the model can store at least m = alpha(c)pN patterns, where alpha(c) almost-equal-to 0.027 if c greater-than-or-equal-to approximately 3 and decreases proportional to 1/(-1n c) for c small. This generalizes the results of Newman for the standard Hopfield model.
引用
收藏
页码:597 / 627
页数:31
相关论文
共 50 条