QUASI-PERIODIC MOTION IN A HYBRID OPTICAL BISTABLE SYSTEM WITH A SHORT DELAY

被引:2
作者
DAI, JH
HU, SQ
TANG, H
DENG, W
ZHANG, HJ
机构
[1] Institute of Physics, Academia Sinica, Beijing, 100080
关键词
D O I
10.1364/OL.16.000889
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The dynamical behavior of a hybrid optical bistable system with a short delay is calculated numerically in detail. The quasi-periodic motion and frequency locking of the system are observed experimentally.
引用
收藏
页码:889 / 891
页数:3
相关论文
共 50 条
[31]   Short quasi-periodic MHD waves in coronal structures [J].
Nakariakov, VM ;
Pascoe, DJ ;
Arber, TD .
SPACE SCIENCE REVIEWS, 2005, 121 (1-4) :115-125
[32]   Quasi-periodic migration of single cells on short microlanes [J].
Zhou, Fang ;
Schaffer, Sophia A. ;
Schreiber, Christoph ;
Segerer, Felix J. ;
Goychuk, Andriy ;
Frey, Erwin ;
Raedler, Joachim O. .
PLOS ONE, 2020, 15 (04)
[33]   Short Quasi-Periodic MHD Waves in Coronal Structures [J].
V. M. Nakariakov ;
D. J. Pascoe ;
T. D. Arber .
Space Science Reviews, 2005, 121 :115-125
[34]   Bubbling, Bistable Limit Cycles and Quasi-Periodic Oscillations in Queues with Delayed Information [J].
Collera, Juancho A. .
SYMMETRY-BASEL, 2022, 14 (02)
[35]   Instability phenomena in impact damper system: From quasi-periodic motion to period-three motion [J].
Yin, Shan ;
Wen, Guilin ;
Shen, Yongkang ;
Xu, Huidong .
JOURNAL OF SOUND AND VIBRATION, 2017, 391 :170-179
[36]   Quasi-periodic solutions for perturbed autonomous delay differential equations [J].
Li, Xuemei ;
Yuan, Xiaoping .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (06) :3752-3796
[37]   Stability of uncertain quasi-periodic hybrid dynamic systems [J].
Li, ZG ;
Soh, YC ;
Wen, CY .
INTERNATIONAL JOURNAL OF CONTROL, 2000, 73 (01) :63-73
[38]   Bifurcations of the symmetric quasi-periodic motion and Lyapunov dimension of a vibro-impact system [J].
Yue, Yuan .
NONLINEAR DYNAMICS, 2016, 84 (03) :1697-1713
[39]   Anti-controlling quasi-periodic impact motion of an inertial impact shaker system [J].
Wen, Guilin ;
Xu, Huidong ;
Chen, Zhong .
JOURNAL OF SOUND AND VIBRATION, 2010, 329 (19) :4040-4047
[40]   Bifurcations of the symmetric quasi-periodic motion and Lyapunov dimension of a vibro-impact system [J].
Yuan Yue .
Nonlinear Dynamics, 2016, 84 :1697-1713