EQUIVALENCE OF SADDLE-POINTS AND OPTIMA, AND DUALITY FOR A CLASS OF NON-SMOOTH NON-CONVEX PROBLEMS

被引:38
作者
JEYAKUMAR, V [1 ]
机构
[1] UNIV MELBOURNE,DEPT MATH,PARKVILLE,VIC 3052,AUSTRALIA
关键词
D O I
10.1016/0022-247X(88)90309-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:334 / 343
页数:10
相关论文
共 22 条
[1]  
BORWEIN JM, 1982, MATH PROGRAM STUD, V19, P77, DOI 10.1007/BFb0120983
[2]   NEW APPROACH TO LAGRANGE MULTIPLIERS. [J].
Clarke, Frank H. .
Mathematics of Operations Research, 1976, 1 (02) :165-174
[3]  
Clarke F. H., 1983, OPTIMIZATION NONSMOO
[4]  
Craven B. D., 1978, MATH PROGRAMMING CON
[5]   INVEX FUNCTIONS AND CONSTRAINED LOCAL MINIMA [J].
CRAVEN, BD .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1981, 24 (03) :357-366
[6]   INVEX FUNCTIONS AND DUALITY [J].
CRAVEN, BD ;
GLOVER, BM .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1985, 39 (AUG) :1-20
[7]   SYMMETRIC DUAL NONLINEAR PROGRAMS [J].
DANTZIG, GB ;
EISENBERG, E ;
COTTLE, RW .
PACIFIC JOURNAL OF MATHEMATICS, 1965, 15 (03) :809-+
[8]   ON SUFFICIENCY OF THE KUHN-TUCKER CONDITIONS [J].
HANSON, MA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 80 (02) :545-550
[9]  
HANSON MA, 1984, FSU M686 FLOR STAT U
[10]   EQUIVALENCE OF SADDLE-POINTS AND OPTIMA FOR NON-CONCAVE PROGRAMS [J].
HEAL, G .
ADVANCES IN APPLIED MATHEMATICS, 1984, 5 (04) :398-415