EXPRESSION OF SUPEROXIDE-DISMUTASE, CATALASE AND GLUTATHIONE-PEROXIDASE IN THE BOVINE CORPUS-LUTEUM - EVIDENCE SUPPORTING A ROLE FOR OXIDATIVE STRESS IN LUTEOLYSIS

被引:63
|
作者
RUEDA, BR
TILLY, KI
HANSEN, TR
HOYER, PB
TILLY, JL
机构
[1] JOHNS HOPKINS UNIV,DEPT POPULAT DYNAM,DIV REPROD BIOL,BALTIMORE,MD 21205
[2] UNIV ARIZONA,DEPT PHYSIOL,TUCSON,AZ 85724
[3] UNIV WYOMING,DEPT ANIM SCI,LARAMIE,WY 82071
来源
ENDOCRINE | 1995年 / 3卷 / 03期
关键词
APOPTOSIS; SUPEROXIDE DISMUTASE; GLUTATHIONE PEROXIDASE; CATALASE; OXIDATIVE FREE RADICALS; CORPUS LUTEUM; BOVINE;
D O I
10.1007/BF02994448
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Apoptosis, a type of physiological or active cell death, has been implicated as a mechanism underlying regression of the corpus luteum (CL) in the rat, bovine, rabbit and ovine ovary. Previous in vitro studies of cultured luteal cells have also provided evidence which suggests that reactive oxygen species play an important role in luteolysis in the rodent ovary. To further evaluate the potential role of oxidative stress in luteal cell demise, changes in the expression of several enzymes known to protect cells from oxidative stress were investigated using bovine CL collected from ovaries of non-pregnant (day 21 of the estrous cycle; regressed CL) and pregnant (day 21 of pregnancy; functional CL) animals. Biochemical analysis of genomic DNA extracted from these two pools of CL demonstrated the presence of extensive levels of internucleosomal DNA cleavage characteristic of cell death via apoptosis in regressed, but not in functional, CL. Northern blot analysis of total RNA indicated that functional CL expressed significantly higher levels of mRNA encoding secreted superoxide dismutase (SEC-SOD, 1.9 kb) and manganese-containing or mitochondrial SOD (Mn-SOD, multiple transcripts) as compared to regressed CL. Similarly, levels of mRNA encoding catalase (2.1 kb), an enzyme responsible for detoxification of peroxides to water, were significantly higher in functional versus regressed CL. From these data, we conclude that a decline in expression of specific oxidative response genes occurs during luteolysis, and that maintained expression of these genes in the CL during pregnancy may prevent oxidative damage and delay regression.
引用
收藏
页码:227 / 232
页数:6
相关论文
共 50 条