A GENERALIZATION OF FAVARD THEOREM FOR POLYNOMIALS SATISFYING A RECURRENCE RELATION

被引:56
作者
DURAN, AJ
机构
[1] Departamento de Análisis Matematico, Universidad de Sevilla, Sevilla, 41080
关键词
D O I
10.1006/jath.1993.1055
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give the canonical expression for an inner product (delined in P the linear space of real polynomials), for which the set of orthonormal polynomials satisfies a (2N + 1)-term recurrence relation. This result is a generalization of Favard's theorem about orthogonal polynomials and three-term recurrence relations. Also, we characterize these inner products in terms of symmetric operators. Similar results are proved for some kinds of discrete Sobolev inner products. © 1993 Academic Press, Inc.
引用
收藏
页码:83 / 109
页数:27
相关论文
共 14 条
[1]   ON ORTHOGONAL POLYNOMIALS WITH RESPECT TO AN INNER PRODUCT INVOLVING DERIVATIVES - ZEROS AND RECURRENCE RELATIONS [J].
BAVINCK, H ;
MEIJER, HG .
INDAGATIONES MATHEMATICAE-NEW SERIES, 1990, 1 (01) :7-14
[2]  
Bavinck H., 1989, APPL ANAL, V33, P103
[3]  
BOAS RP, 1939, B AM MATH SOC, V45, P399
[4]  
Chihara TS., 1978, INTRO ORTHOGONAL POL
[6]  
DURAN AJ, UNPUB ORTHOGONAL POL
[7]  
EVANS WD, RECURRENCE RELATIONS
[8]  
Favard J, 1935, CR HEBD ACAD SCI, V200, P2052
[9]   ON POLYNOMIALS ORTHOGONAL WITH RESPECT TO CERTAIN SOBOLEV INNER PRODUCTS [J].
ISERLES, A ;
KOCH, PE ;
NORSETT, SP ;
SANZSERNA, JM .
JOURNAL OF APPROXIMATION THEORY, 1991, 65 (02) :151-175
[10]  
ISERLES A, 1990, ALGORITHMS FOR APPROXIMATION II, P117