A NON-COMMUTATIVE MARTINGALE REPRESENTATION THEOREM FOR NON-FOCK QUANTUM BROWNIAN-MOTION

被引:53
作者
HUDSON, RL
LINDSAY, JM
机构
关键词
D O I
10.1016/0022-1236(85)90034-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:202 / 221
页数:20
相关论文
共 10 条
[1]   QUASI-FREE QUANTUM STOCHASTIC INTEGRALS FOR THE CAR AND CCR [J].
BARNETT, C ;
STREATER, RF ;
WILDE, IF .
JOURNAL OF FUNCTIONAL ANALYSIS, 1983, 52 (01) :19-47
[2]   THE ITO-CLIFFORD INTEGRAL [J].
BARNETT, C ;
STREATER, RF ;
WILDE, IF .
JOURNAL OF FUNCTIONAL ANALYSIS, 1982, 48 (02) :172-212
[3]  
BRATTELI O, 1979, OPERATOR ALGEBRAS QU, V1
[4]   QUANTUM-MECHANICAL WIENER PROCESSES [J].
COCKROFT, AM ;
HUDSON, RL .
JOURNAL OF MULTIVARIATE ANALYSIS, 1977, 7 (01) :107-124
[5]   QUANTUM-MECHANICAL CENTRAL LIMIT THEOREM [J].
CUSHEN, CD ;
HUDSON, RL .
JOURNAL OF APPLIED PROBABILITY, 1971, 8 (03) :454-&
[6]   STOCHASTIC DILATIONS OF UNIFORMLY CONTINUOUS COMPLETELY POSITIVE SEMIGROUPS [J].
HUDSON, RL ;
PARTHASARATHY, KR .
ACTA APPLICANDAE MATHEMATICAE, 1984, 2 (3-4) :353-378
[7]   QUANTUM ITOS FORMULA AND STOCHASTIC EVOLUTIONS [J].
HUDSON, RL ;
PARTHASARATHY, KR .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 93 (03) :301-323
[8]  
HUDSON RL, CLASSICAL LIMIT REDU
[9]  
Parthasarathy K. R., 1978, STOCHASTIC PROCESSES, V7, P1
[10]  
Segal I., 1962, ILLINOIS J MATH, V6, P500