Resolvent Flows for Convex Functionals and p-Harmonic Maps

被引:8
作者
Kuwae, Kazuhiro [1 ]
机构
[1] Kumamoto Univ, Grad Sch Sci & Technol, Dept Math & Engn, Kumamoto 8608555, Japan
来源
ANALYSIS AND GEOMETRY IN METRIC SPACES | 2015年 / 3卷 / 01期
基金
日本学术振兴会;
关键词
CAT(0)-space; CAT(kappa)-space; p-uniformly convex space; weak convergence; p-uniformly lambda-convex function; Moreau-Yosida approximation; Hamilton-Jacobi semi-group; Hopf-Lax formula; resolvent; local slope; global slope; stationary point; Cheeger's energy; Cheeger type Sobolev space; p-harmonic map; L-p-Wasserstein space; generalized geodesics;
D O I
10.1515/agms-2015-0004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the unique existence of the (non-linear) resolvent associated to a coercive proper lower semicontinuous function satisfying a weak notion of p-uniform lambda-convexity on a complete metric space, and establish the existence of the minimizer of such functions as the large time limit of the resolvents, which generalizing pioneering work by Jost for convex functionals on complete CAT(0)-spaces. The results can be applied to L-p-Wasserstein space over complete p-uniformly convex spaces. As an application, we solve an initial boundary value problem for p-harmonic maps into CAT(0)-spaces in terms of Cheeger type p-Sobolev spaces.
引用
收藏
页码:46 / 72
页数:27
相关论文
共 34 条
[1]  
Ambrosio L., 2008, LECT MATH ETH ZURICH, V2, P334
[2]  
Bacak M, 2014, DE GRUYTER SERIES NO, V22
[3]  
Bacak M., 2012, T AM MATH S IN PRESS
[4]   SHARP UNIFORM CONVEXITY AND SMOOTHNESS INEQUALITIES FOR TRACE NORMS [J].
BALL, K ;
CARLEN, EA ;
LIEB, EH .
INVENTIONES MATHEMATICAE, 1994, 115 (03) :463-482
[5]  
Bridson M. R., 1999, METRIC SPACES NONPOS, V319
[6]   Differentiability of Lipschitz functions on metric measure spaces [J].
Cheeger, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (03) :428-517
[7]  
Clarkson JA, 1936, T AM MATH SOC, V40, P396
[8]   POTENTIALS AND ISOMETRIC EMBEDDINGS IN L1 [J].
DOR, LE .
ISRAEL JOURNAL OF MATHEMATICS, 1976, 24 (3-4) :260-268
[9]   Combinatorial harmonic maps and discrete-group actions on hadamard spaces [J].
Izeki, H ;
Nayatani, S .
GEOMETRIAE DEDICATA, 2005, 114 (01) :147-188
[10]   Convex functionals and generalized harmonic maps into spaces of non positive curvature [J].
Jost, J .
COMMENTARII MATHEMATICI HELVETICI, 1995, 70 (04) :659-673