STABLE POSITIVE PERIODIC-SOLUTION OF TIME-DEPENDENT LOTKA-VOLTERRA PERIODIC MUTUALISTIC SYSTEM

被引:3
作者
CUI, JA
CHEN, LS
机构
[1] XINJIANG UNIV,DEPT MATH,URMUQI 830046,PEOPLES R CHINA
[2] ACAD SINICA,INST MATH,BEIJING 100080,PEOPLES R CHINA
关键词
D O I
10.1016/S0252-9602(18)30086-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The time dependent Lotka-Volterra mutualistic system x(i) = x(i)(r(i)(t) + SIGMA(j=1)n(alpha)ij(t)x(i)), (i = 1,..., n). be considered under the assumption that r(i)(t) and alpha(ij)(t) are omega-periodic functions. A set Of easily verifiable sufficient conditions are given which gurantee the global asymptotic stability of positive omega-perodic solution of system (1). When r(i)(t), alpha(ij)(t) are constants, the conditions are coincident with the necessary and sufficient condition that the positive equilibrium (if there exists) is global asymptotic stable.
引用
收藏
页码:19 / 23
页数:5
相关论文
共 4 条
[1]  
CHEN LS, 1988, MODEL RES METHODS MA
[2]   PERIODIC TIME-DEPENDENT PREDATOR-PREY SYSTEMS [J].
CUSHING, JM .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1977, 32 (01) :82-95
[3]   STABILITY IN MODELS OF MUTUALISM [J].
GOH, BS .
AMERICAN NATURALIST, 1979, 113 (02) :261-275
[4]   DYNAMICS AND COMPARATIVE STATICS OF MUTUALISTIC COMMUNITIES [J].
TRAVIS, CC ;
POST, WM .
JOURNAL OF THEORETICAL BIOLOGY, 1979, 78 (04) :553-571