Some Results on Generalized Sasakian-Space-Forms

被引:0
作者
De, U. C. [1 ]
Sarkar, A. [2 ]
机构
[1] Univ Calcutta, Dept Pure Math, 35 Ballygunje Circular Rd, Kolkata 700019, W Bengal, India
[2] Univ Burdwan, Dept Math, Burdwan 713104, W Bengal, India
来源
THAI JOURNAL OF MATHEMATICS | 2010年 / 8卷 / 01期
关键词
generalized Sasakian-space-forms; conformally flat; locally phi-symmetric; eta-recurrent; eta-parallel; eta-Einstein manifold; scalar curvature; conformal transformation; quasi-Sasakian;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The object of the present paper is to study locally phi-symmetric generalized Sasakian-space-forms and generalized Sasakian-space-forms with eta-recurrent Ricci tensor. Such space-forms with three-dimensional quasi-Sasakian structure are also considered.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
[21]   Nonexistence of φ{symbol}-recurrent generalized Sasakian-space-forms in a special case [J].
Peyghan E. ;
Tayebi A. .
Lobachevskii Journal of Mathematics, 2014, 35 (1) :23-26
[22]   ON m-PROJECTIVE CURVATURE TENSOR OF GENERALIZED SASAKIAN-SPACE-FORMS [J].
Pandey, Shravan K. ;
Singh, R. N. .
FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2018, 33 (03) :361-373
[23]   Different solitons associated with 3-dimensional generalized Sasakian-space-forms [J].
Sardar, Arpan ;
Sarkar, Avijit .
AFRIKA MATEMATIKA, 2025, 36 (01)
[24]   CERTAIN RESULTS ON SUBMANIFOLDS OF GENERALIZED SASAKIAN SPACE-FORMS [J].
Yadav, Sunil Kumar ;
Chaubey, Sudhakar K. .
HONAM MATHEMATICAL JOURNAL, 2020, 42 (01) :123-137
[25]   Yamabe Solitons on Some Types of Generalized Sasakian Space Forms [J].
Sarkar, A. ;
Biswas, Gour Gopal .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
[26]   RICCI-BOURGUIGNON SOLITONS AND FISCHER-MARSDEN CONJECTURE ON GENERALIZED SASAKIAN-SPACE-FORMS WITH β-KENMOTSU STRUCTURE [J].
Chaubey, Sudhakar Kumar ;
Suh, Young Jin .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (02) :341-358
[27]   Slant Submersions in Generalized Sasakian Space Forms and Some Optimal Inequalities [J].
Aquib, Md .
AXIOMS, 2025, 14 (06)
[28]   ON INVARIANT SUBMANIFOLDS IN GENERALIZED SASAKIAN SPACE FORMS [J].
Shukla, S. S. ;
Chaubey, Pavan Kumar .
JOURNAL OF DYNAMICAL SYSTEMS AND GEOMETRIC THEORIES, 2010, 8 (02) :173-188
[29]   A New Class of Slant Submanifolds in Generalized Sasakian Space Forms [J].
Alegre, Pablo ;
Barrera, Joaquin ;
Carriazo, Alfonso .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (03)
[30]   A New Class of Slant Submanifolds in Generalized Sasakian Space Forms [J].
Pablo Alegre ;
Joaquín Barrera ;
Alfonso Carriazo .
Mediterranean Journal of Mathematics, 2020, 17