A decomposition of polynomials relative to a quasi-homogeneous polynomial

被引:0
作者
Jeanquartier, P
机构
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1995年 / 321卷 / 12期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a quasi-homogeneous polynomial which is the sum of terms +/-x(i)(pi), with p(i) an integer greater than or equal to 2, 1 less than or equal to i less than or equal to n, n greater than or equal to 2. The polynomials in F over R constitute a subring R[F] of R [x] = R [x(1),...,x(n)]. It is shown that R [x] is the direct sum of two R [F]-modules A and B. A is generated by the monomials x(lambda), 0 less than or equal to lambda(i) less than or equal to p(i) - 2, 1 less than or equal to i less than or equal to a. B is the sum of the D-ij R [x]'s, with D-ij = partial derivative(2) F partial derivative(j) - partial derivative(j) F partial derivative(i), 1 less than or equal to i < j less than or equal to n.
引用
收藏
页码:1533 / 1535
页数:3
相关论文
共 50 条
[41]   ON THE CLASSIFICATION OF QUASI-HOMOGENEOUS FUNCTIONS [J].
KREUZER, M ;
SKARKE, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 150 (01) :137-147
[42]   On Quasi-Homogeneous Production Functions [J].
Vilcu, Alina-Daniela ;
Vilcu, Gabriel-Eduard .
SYMMETRY-BASEL, 2019, 11 (08)
[43]   Quasi-homogeneous Hilbert Modules [J].
Yongjiang Duan .
Integral Equations and Operator Theory, 2007, 58 :301-314
[44]   RATIONAL QUASI-HOMOGENEOUS SINGULARITIES [J].
FLENNER, H .
ARCHIV DER MATHEMATIK, 1981, 36 (01) :35-44
[45]   QUASI-HOMOGENEOUS OVERLAP FUNCTIONS [J].
Costa, L. M. ;
Bedregal, B. R. C. .
DECISION MAKING AND SOFT COMPUTING, 2014, 9 :294-299
[46]   Quasi-homogeneous normal forms [J].
Algaba, A ;
Freire, E ;
Gamero, E ;
García, C .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 150 (01) :193-216
[47]   MEROMORPHIC PROLONGATION OF PARA-ADIC IGUSA FUNCTIONS IN THE CASE OF QUASI-HOMOGENEOUS POLYNOMIALS [J].
KANTOR, JM .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 310 (07) :527-530
[48]   Bernstein-Sato polynomials associated with a quasi-homogeneous complete intersection with an isolated singularity [J].
Maynadier, H .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1997, 125 (04) :547-571
[49]   Classification of Global Phase Portrait of Planar Quintic Quasi-Homogeneous Coprime Polynomial Systems [J].
BaoHua Qiu ;
HaiHua Liang .
Qualitative Theory of Dynamical Systems, 2017, 16 :417-451
[50]   Classification of Global Phase Portrait of Planar Quintic Quasi-Homogeneous Coprime Polynomial Systems [J].
Qiu, BaoHua ;
Liang, HaiHua .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2017, 16 (02) :417-451