MOORE-PENROSE INVERSE IN AN INDEFINITE INNER PRODUCT SPACE

被引:20
作者
Kamaraj, K. [1 ]
Sivakumar, K. C. [2 ]
机构
[1] Anna Univ, Coll Engn, Dept Math, Chennai 600025, Tamil Nadu, India
[2] Indian Inst Technol Madras, Dept Math, Chennai 600036, Tamil Nadu, India
关键词
Moore-Penrose inverse; group inverse; range Hermitian matrices; indefinite inner product;
D O I
10.1007/BF02935806
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The concept of the Moore-Penrose inverse in an indefinite inner product space is introduced. Extensions of some of the formulae in the Euclidean space to an indefinite inner product space are studied. In particular range-hermitianness is completely characterized. Equivalence of a weighted generalized inverse and the Moore-Penrose inverse is proved. Finally, methods of computing the Moore-Penrose inverse are presented.
引用
收藏
页码:297 / 310
页数:14
相关论文
共 11 条
[1]  
Ben-Israel A, 1974, GEN INVERSE THEORY A
[2]  
Bognar, 1974, INDEFINITE INNER PRO
[3]  
DECELL HP, 1965, SIAM REV, V7, P526
[4]  
Kalman R. E., 1976, GENERALIZED INVERSES, P111, DOI DOI 10.1016/B978-0-12-514250-2.50006-8
[5]  
Penrose R., 1955, P CAMB PHIL SOC, V51, P406, DOI [10.1017/S0305004100030401, DOI 10.1017/S0305004100030401]
[6]  
PRASAD KM, 1992, LINEAR ALGEBRA APPL, V165, P59
[7]  
Rao C.R., 1971, GENERALIZED INVERSE
[8]  
Rodman L., 1999, OBZORNIK ZA MATEMATI, V46, P57
[9]  
Sen Wenyu, 1991, INTRO GENERALIZED IV
[10]  
Sun W., 1996, SIAM J MATRIX ANAL A, V19, P772