ON THE CLASS OF BRILL-NOETHER LOCI FOR PRYM VARIETIES

被引:17
作者
DECONCINI, C [1 ]
PRAGACZ, P [1 ]
机构
[1] MAX PLANCK INST MATH,D-53225 BONN,GERMANY
关键词
D O I
10.1007/BF01444512
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:687 / 697
页数:11
相关论文
共 20 条
[1]  
Arbarello E., 1985, GEOMETRY ALGEBRAIC C, V1
[2]   AN EXISTENCE THEOREM FOR PRYM SPECIAL DIVISORS [J].
BERTRAM, A .
INVENTIONES MATHEMATICAE, 1987, 90 (03) :669-671
[3]   ALGEBRA STRUCTURES FOR FINITE FREE RESOLUTIONS, AND SOME STRUCTURE THEOREMS FOR IDEALS OF CODIMENSION .3. [J].
BUCHSBAUM, DA ;
EISENBUD, D .
AMERICAN JOURNAL OF MATHEMATICS, 1977, 99 (03) :447-485
[4]   C IS NOT ALGEBRAICALLY EQUIVALENT TO C- IN ITS JACOBIAN [J].
CERESA, G .
ANNALS OF MATHEMATICS, 1983, 117 (02) :285-291
[5]   ON THE TORELLI PROBLEM FOR PRYM VARIETIES [J].
DEBARRE, O .
AMERICAN JOURNAL OF MATHEMATICS, 1989, 111 (01) :111-134
[6]   CHARACTERISTIC FREE APPROACH TO INVARIANT THEORY [J].
DECONCINI, C ;
PROCESI, C .
ADVANCES IN MATHEMATICS, 1976, 21 (03) :330-354
[7]   ARITHMETIC COHEN-MACAULAYNESS AND ARITHMETIC NORMALITY FOR SCHUBERT VARIETIES [J].
DECONCINI, C ;
LAKSHMIBAI, V .
AMERICAN JOURNAL OF MATHEMATICS, 1981, 103 (05) :835-850
[8]  
Hartshorne R., 1977, GRADUATE TEXTS MATH
[9]  
Hoffman P.N., 1992, PROJECTIVE REPRESENT
[10]   DETERMINANTAL FORMULA OF SCHUBERT CALCULUS [J].
KEMPF, G ;
LAKSOV, D .
ACTA MATHEMATICA, 1974, 132 (3-4) :153-162