ON THE DISCRIMINANT VARIETY OF A PROJECTIVE MANIFOLD

被引:24
|
作者
BELTRAMETTI, MC
FANIA, ML
SOMMESE, AJ
机构
[1] UNIV LAQUILA, DIPARTIMENTO MATEMAT, I-67100 LAQUILA, ITALY
[2] UNIV NOTRE DAME, DEPT MATH, NOTRE DAME, IN 46556 USA
基金
美国国家科学基金会;
关键词
D O I
10.1515/form.1992.4.529
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let L be a very ample line bundle on a smooth, n-dimensional, connected, complex, projective manifold, X. Let D denote the discriminant variety of (X, L), i. e. the set D subset-of Absolute value of L of singular divisors. The defect of (X, L), def(X, L), is defined to be 1 less than the codimension of D in Absolute value of L. In this article pairs, (X, L), as above with def(X, L) > 0 are studied. The main tool used is a result of Beltrametti, Sommese, and Wisniewski showing that if (X, L) is as above with def(X, L) > 0, then there is a contraction of an extremal ray, PHI: X --> Y with Y normal and projective, and K(X) + ((n + def(X, L))/2 + 1) L congruent-to O(X). Using this result the classification of pairs (X, L) with positive defect is reduced to the study of Fano manifolds of positive defect. As one application the complete classification of pairs (X, L) with positive defect and dimX less-than-or-equal-to 10 is given. Previously classification had been done in dimX less-than-or-equal-to 6 by Ein, with partial results in dimX = 7 by Ein and Lanteri-Struppa.
引用
收藏
页码:529 / 547
页数:19
相关论文
共 50 条
  • [1] ON THE DISCRIMINANT OF HYPERSURFACE SECTIONS OF HIGH-ORDER OF A PROJECTIVE SINGULAR VARIETY
    BUIUM, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1984, 298 (04): : 67 - 70
  • [2] Maximal Projective Subspaces in the Variety of Planar Normal Sections of a Flag Manifold
    Walter Dal Lago
    Alicia N. García
    Cristián U. Sánchez
    Geometriae Dedicata, 1999, 75 : 219 - 233
  • [3] Maximal projective subspaces in the variety of planar normal sections of a flag manifold
    Dal Lago, W
    García, AN
    Sánchez, CU
    GEOMETRIAE DEDICATA, 1999, 75 (03) : 219 - 233
  • [4] Manifold Discriminant Analysis
    Wang, Ruiping
    Chen, Xilin
    CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 429 - 436
  • [5] Discriminant analysis on embedded manifold
    Yan, SC
    Zhang, HJ
    Hu, YX
    Zhang, BY
    Cheng, QS
    COMPUTER VISION - ECCV 2004, PT 1, 2004, 3021 : 121 - 132
  • [6] Manifold Partition Discriminant Analysis
    Zhou, Yang
    Sun, Shiliang
    IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (04) : 830 - 840
  • [7] GEOMETRY IN A MANIFOLD WITH PROJECTIVE STRUCTURE
    EHLERS, J
    SCHILD, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 32 (02) : 119 - 146
  • [8] Quantization of a symplectic manifold associated to a manifold with projective structure
    Biswas, Indranil
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (07)
  • [9] CALCULATION OF INTERSECTION ON A PROJECTIVE MANIFOLD
    GOHSN, A
    BULLETIN DES SCIENCES MATHEMATIQUES, 1992, 116 (04): : 453 - 463
  • [10] COVERINGS OF A PROJECTIVE ALGEBRAIC MANIFOLD
    WATANABE, K
    PACIFIC JOURNAL OF MATHEMATICS, 1981, 96 (01) : 243 - 246