A SHEAR DEFORMATION SHELL THEORY FOR FINITE ROTATIONS AND ITS NUMERICAL-SOLUTION WITH THE FINITE-DIFFERENCE METHOD

被引:2
作者
HOLZAPFEL, GA
机构
[1] Lehrstuhl für Festigkeitslehre, Technische Universität Graz, Graz, A-8010
关键词
D O I
10.1007/BF01174176
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
For shells undergoing finite deformations (displacements and rotations) a geometrically nonlinear shear-deformation shell theory will be formulated in terms of consistent operators. Starting from the variational principle of Hellinger-Reissner, the characteristic properties of the nonlinear theories will be demonstrated in a very general manner. The paper continues with the incremental formulation, used for the application of the incremental-iterative numerical techniques. For transforming the system of simultaneous differential equations into algebraic equations, the appropriate two-dimensional Hermitian finite-difference operators are described. Finally, the reliability of numerical integration procedure is demonstrated by a selected numerical example.
引用
收藏
页码:193 / 207
页数:15
相关论文
共 22 条
[1]   NUMERICAL-METHOD FOR SOLVING PROBLEMS OF LINEAR 2-DIMENSIONAL STRUCTURES [J].
ALMANNAI, A ;
BASAR, Y .
INGENIEUR ARCHIV, 1977, 46 (05) :307-322
[2]  
ALMANNAI A, 1976, 765 RUHR U BOCH I KI
[3]   A CONSISTENT THEORY OF GEOMETRICALLY NONLINEAR SHELLS WITH AN INDEPENDENT ROTATION VECTOR [J].
BASAR, Y .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1987, 23 (10) :1401-1415
[4]   A CONSISTENT THEORY FOR SHELLS WITH FINITE DISPLACEMENTS [J].
BASAR, Y .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1986, 66 (07) :297-308
[5]   NUMERICAL TREATMENT OF LINEAR-STABILITY THEORY OF GENERAL ROTATIONAL SHELLS [J].
BASAR, Y .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1976, 56 (07) :287-298
[6]  
BASAR Y, 1985, MECHANIK FLACHENTRAG
[7]  
BASAR Y, 1975, BAUINGENIEUR, V50, P41
[8]  
BASAR Y, 1974, 747 RUHR U BOCH I KI
[9]  
Collatz L., 1966, NUMERICAL TREATMENT, V3
[10]  
DICKEL T, 1980, MITTLG I MECHANIK