The non-negative matrix factorization toolbox for biological data mining

被引:132
|
作者
Li, Yifeng [1 ]
Ngom, Alioune [1 ]
机构
[1] Univ Windsor, Sch Comp Sci, Windsor, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Non-negative matrix factorization; Clustering; Bi-clustering; Feature extraction; Feature selection; Classification; Missing values;
D O I
10.1186/1751-0473-8-10
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Non-negative matrix factorization (NMF) has been introduced as an important method for mining biological data. Though there currently exists packages implemented in R and other programming languages, they either provide only a few optimization algorithms or focus on a specific application field. There does not exist a complete NMF package for the bioinformatics community, and in order to perform various data mining tasks on biological data. Results: We provide a convenient MATLAB toolbox containing both the implementations of various NMF techniques and a variety of NMF-based data mining approaches for analyzing biological data. Data mining approaches implemented within the toolbox include data clustering and bi-clustering, feature extraction and selection, sample classification, missing values imputation, data visualization, and statistical comparison. Conclusions: A series of analysis such as molecular pattern discovery, biological process identification, dimension reduction, disease prediction, visualization, and statistical comparison can be performed using this toolbox.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Optimization and expansion of non-negative matrix factorization
    Xihui Lin
    Paul C. Boutros
    BMC Bioinformatics, 21
  • [32] Attributed Non-negative Matrix Multi-factorization for Data Representation
    Wang, Jie
    Sun, Yanfeng
    Guo, Jipeng
    Hu, Yongli
    Yin, Baocai
    PATTERN RECOGNITION AND COMPUTER VISION, PT IV, 2021, 13022 : 66 - 77
  • [33] Rank selection for non-negative matrix factorization
    Cai, Yun
    Gu, Hong
    Kenney, Toby
    STATISTICS IN MEDICINE, 2023, 42 (30) : 5676 - 5693
  • [34] Non-negative matrix factorization for semi-supervised data clustering
    Chen, Yanhua
    Rege, Manjeet
    Dong, Ming
    Hua, Jing
    KNOWLEDGE AND INFORMATION SYSTEMS, 2008, 17 (03) : 355 - 379
  • [35] Non-negative matrix factorization for semi-supervised data clustering
    Yanhua Chen
    Manjeet Rege
    Ming Dong
    Jing Hua
    Knowledge and Information Systems, 2008, 17 : 355 - 379
  • [36] Initialization enhancer for non-negative matrix factorization
    Zheng, Zhonglong
    Yang, Jie
    Zhu, Yitan
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2007, 20 (01) : 101 - 110
  • [37] Convex Non-Negative Matrix Factorization in the Wild
    Thurau, Christian
    Kersting, Kristian
    Bauckhage, Christian
    2009 9TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, 2009, : 523 - 532
  • [38] Robust discriminative non-negative matrix factorization
    Zhang, Ruiqing
    Hu, Zhenfang
    Pan, Gang
    Wang, Yueming
    NEUROCOMPUTING, 2016, 173 : 552 - 561
  • [39] Truncated Cauchy Non-Negative Matrix Factorization
    Guan, Naiyang
    Liu, Tongliang
    Zhang, Yangmuzi
    Tao, Dacheng
    Davis, Larry S.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (01) : 246 - 259
  • [40] Hybrid Manifold Regularized Non-negative Matrix Factorization for Data Representation
    Luo, Peng
    Peng, Jinye
    Guan, Ziyu
    Fan, Jianping
    BIOMETRIC RECOGNITION, 2016, 9967 : 564 - 574