HIGHER LEFT DERIVATIONS ON SEMIPRIME RINGS

被引:0
|
作者
Park, Kyoo-Hong [1 ]
机构
[1] Seowon Univ, Dept Math Educ, Cheongju 361742, South Korea
来源
JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS | 2010年 / 17卷 / 04期
关键词
higher left derivations; semiprime rings; center;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we extend the Bregar and Vukman's result [1, Proposition 1.6], which is well-known, to higher left derivations as follows: let R be a ring. (i) Under a certain condition, the existence of a nonzero higher left derivation implies that R is commutative. (ii) if R is semiprime, every higher left derivation on R is a higher derivation which maps R into its center.
引用
收藏
页码:355 / 362
页数:8
相关论文
共 50 条
  • [1] Jordan triple (α,β)-higher *-derivations on semiprime rings
    Ezzat, O. H.
    DEMONSTRATIO MATHEMATICA, 2023, 56 (01)
  • [2] Functional equations related to higher derivations in semiprime rings
    Ezzat, O. H.
    OPEN MATHEMATICS, 2021, 19 (01): : 1359 - 1365
  • [3] (σ, τ)-DERIVATIONS OF SEMIPRIME RINGS
    Atteya, M. J.
    Haetinger, C.
    Rasen, D. I.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2019, 43 (02): : 239 - 246
  • [4] Left Ideals and Pair of Generalized Derivations in Semiprime Rings
    Ali, Asma
    Khan, Shahoor
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2016, 40 (04) : 461 - 465
  • [5] NOTES ON LEFT IDEALS OF SEMIPRIME RINGS WITH MULTIPLICATIVE GENERALIZED (α, α) - DERIVATIONS
    Ulutas, Ercan
    Golbasi, Oznur
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2021, 36 (04): : 903 - 912
  • [6] ON DERIVATIONS AND COMMUTATIVITY IN SEMIPRIME RINGS
    DENG, Q
    BELL, HE
    COMMUNICATIONS IN ALGEBRA, 1995, 23 (10) : 3705 - 3713
  • [7] SEMIPRIME RINGS WITH HYPERCENTRAL DERIVATIONS
    LEE, TK
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1995, 38 (04): : 445 - 449
  • [8] ON GENERALIZED DERIVATIONS OF PRIME AND SEMIPRIME RINGS
    Huang, Shuliang
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (02): : 771 - 776
  • [9] ON COMMUTATIVITY OF SEMIPRIME RINGS WITH GENERALIZED DERIVATIONS
    Golbasi, Oznur
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2009, 40 (03) : 191 - 199
  • [10] STUDY OF (σ, τ)-GENERALIZED DERIVATIONS WITH THEIR COMPOSITION OF SEMIPRIME RINGS
    Fosner, Ajda
    Atteya, Mehsin Jabel
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2019, 43 (04): : 535 - 558