OPIAL-TYPE INEQUALITIES INVOLVING HIGHER-ORDER DERIVATIVES

被引:6
作者
AGARWAL, RP
PANG, PYH
机构
[1] Department of Mathematics, National University of Singapore, Kent Ridge
关键词
D O I
10.1006/jmaa.1995.1005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we offer very general Opial-type inequalities involving higher order derivatives. From these inequalities we then deduce extended and improved versions of several recent results. (C) 1995 Academic Press, Inc.
引用
收藏
页码:85 / 103
页数:19
相关论文
共 16 条
[1]  
AGARWAL RP, 1982, ANAL STI U AL I CUZA, V28, P123
[2]  
AGARWAL RP, 1992, APPL ANAL, V43, P47
[3]   ELEMENTARY PROOFS OF SOME OPIAL-TYPE INTEGRAL-INEQUALITIES [J].
BEESACK, PR .
JOURNAL D ANALYSE MATHEMATIQUE, 1979, 36 :1-14
[4]   BEST CONSTANTS IN INEQUALITIES RELATED TO OPIALS INEQUALITY [J].
BOYD, DW .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1969, 25 (02) :378-&
[5]   SOME NEW OPIAL-TYPE INEQUALITIES [J].
CHEUNG, WS .
MATHEMATIKA, 1990, 37 (73) :136-142
[6]   AN INEQUALITY SIMILAR TO OPIALS INEQUALITY [J].
DAS, KM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 22 (01) :258-&
[7]  
Fagbohun A.B., 1986, S STEVIN, V60, P301
[8]   ON OPIALS INEQUALITY FOR F(N) [J].
FINK, AM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 115 (01) :177-181
[9]  
FitzGerald C.H., 1984, GENERAL INEQUALITIES, V4, P25
[10]  
LI JD, 1992, J MATH ANAL APPL, V167, P98