STABILITY PROPERTIES OF A SCHEME FOR THE APPROXIMATE SOLUTION OF A DELAY-INTEGRO-DIFFERENTIAL EQUATION

被引:42
作者
BAKER, CTH [1 ]
FORD, NJ [1 ]
机构
[1] CHESTER COLL HIGHER EDUC,CHESTER,ENGLAND
关键词
D O I
10.1016/0168-9274(92)90027-B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss some stability properties of a numerical scheme applied to a Volterra integro-differential equation with a finite memory (in which the solution is determined by an initial function). The numerical scheme is based on a strongly-stable linear multistep formula and a consistent quadrature rule, applied with a fixed step.
引用
收藏
页码:357 / 370
页数:14
相关论文
共 12 条
[1]  
BAKER CTH, 1990, REMARKS STABILITY RE
[2]  
BAKER CTH, 1989, 174 U MANCH NUM AN T
[3]  
BAKER CTH, 1989, 180 U MANCH NUM AN T
[4]  
Brunner H., 1986, CWI MONOGRAPHS, V3
[5]  
Ford N.J, 1988, INT SERIES NUMERICAL, V86, P47
[6]  
FORD NJ, 1991, THESIS U LIVERPOOL L
[7]   NONLINEAR VOLTERRA INTEGRODIFFERENTIAL SYSTEMS WITH L-1-KERNELS [J].
GROSSMAN, SI ;
MILLER, RK .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1973, 13 (03) :551-566
[8]  
Laks V, 1988, THEORY DIFFERENCE EQ
[9]   ON THE STABILITY OF LINEAR MULTISTEP METHODS FOR VOLTERRA CONVOLUTION EQUATIONS [J].
LUBICH, C .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1983, 3 (04) :439-465