Order of linear approximation from shift-invariant spaces

被引:41
作者
Jetter, K
Zhou, DX
机构
[1] Fachbereich Mathematik, Universität Duisburg, Duisburg
关键词
approximation order; Fourier transform; quasi-interpolation; cardinal interpolation; shift-invariant space;
D O I
10.1007/BF01208430
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Fourier analysis approach is taken to investigate the approximation order of scaled versions of certain linear operators into shift-invariant subspaces of L(2)(R(d)), Quasi-interpolants and cardinal interpolants are special operators of this type, and we give a complete characterization of the order in terms of some type of ellipticity condition for a related function. We apply these results by showing that the L(2)-approximation order of a closed shift-invariant subspace can often he realized by such an operator.
引用
收藏
页码:423 / 438
页数:16
相关论文
共 18 条
[1]  
Buhmann M.D., 1993, MULTIVARIATE APPROXI, P35
[2]  
BURCHARD HG, 1993, COORDINATE ORDER APP
[3]  
Chui C.K, 1988, MULTIVARIATE SPLINES, V54
[4]   CARDINAL INTERPOLATION WITH DIFFERENCES OF TEMPERED FUNCTIONS [J].
CHUI, CK ;
WARD, JD ;
JETTER, K .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1992, 24 (12) :35-48
[5]  
CHUI CK, 1987, MATH COMPUT, V48, P711, DOI 10.1090/S0025-5718-1987-0878701-2
[6]  
de Boor C., 1993, BOX SPLINES
[7]  
DEBOOR C, 1990, NATO ADV SCI I C-MAT, V307, P313
[8]   APPROXIMATION FROM SHIFT-INVARIANT SUBSPACES OF L(2(R(D)) [J].
DEBOOR, C ;
DEVORE, RA ;
RON, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 341 (02) :787-806
[9]   FOURIER-ANALYSIS OF THE APPROXIMATION POWER OF PRINCIPAL SHIFT-INVARIANT SPACES [J].
DEBOOR, C ;
RON, A .
CONSTRUCTIVE APPROXIMATION, 1992, 8 (04) :427-462
[10]  
DEBOOR C, 1993, APPROXIMATION THEORY, V7, P1