ON ERGODICITY OF AN INTEGRABLE SYSTEM (THE TODA CHAIN)

被引:4
|
作者
VINOGRADOV, GA
ELYASHEVICH, MM
LIKHACHEV, VN
机构
[1] Institute of Chemical Physics of the Academy of Sciences of the USSR, Kosygin Street 4, V-334, GSP-1
关键词
D O I
10.1016/0375-9601(90)90471-Y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The dynamical and thermodynamical properties of the Toda chain with cyclic boundary conditions are investigated. It is shown that for some definite types of initial conditions the system under consideration behaves as an ergodic one, i.e., the one-particle dynamical distribution function coincides with the equilibrium thermodynamical distribution function.
引用
收藏
页码:515 / 518
页数:4
相关论文
共 50 条
  • [1] An integrable system related to the spherical top and the Toda chain
    Tsyganov, AV
    THEORETICAL AND MATHEMATICAL PHYSICS, 2000, 124 (02) : 1121 - 1131
  • [2] An integrable system related to the spherical top and the Toda chain
    A. V. Tsyganov
    Theoretical and Mathematical Physics, 2000, 124 : 1121 - 1131
  • [3] THE TODA LATTICE AS A FORCED INTEGRABLE SYSTEM
    HANSEN, PJ
    KAUP, DJ
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1985, 54 (11) : 4126 - 4132
  • [4] Integrable hydrodynamics of Toda chain: case of small systems
    Aritra Kundu
    The European Physical Journal Special Topics, 2023, 232 : 1753 - 1762
  • [5] Integrable Boundary Interactions for Ruijsenaars’ Difference Toda Chain
    J. F. van Diejen
    E. Emsiz
    Communications in Mathematical Physics, 2015, 337 : 171 - 189
  • [6] Integrable deformation of the Toda chain and quasigraded Lie algebras
    Skrypnyk, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (44): : 9665 - 9680
  • [7] Integrable hydrodynamics of Toda chain: case of small systems
    Kundu, Aritra
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2023, 232 (11): : 1753 - 1762
  • [8] On some integrable generalizations of the continuous Toda system
    Saveliev, MV
    THEORETICAL AND MATHEMATICAL PHYSICS, 1996, 108 (02) : 1003 - 1012
  • [9] Equilibrium dynamical correlations in the Toda chain and other integrable models
    Kundu, Aritra
    Dhar, Abhishek
    PHYSICAL REVIEW E, 2016, 94 (06)
  • [10] Transport in perturbed classical integrable systems: The pinned Toda chain
    Di Cintio, Pierfrancesco
    Iubini, Stefano
    Lepri, Stefano
    Livi, Roberto
    CHAOS SOLITONS & FRACTALS, 2018, 117 : 249 - 254