HARNACK INEQUALITIES FOR HYPOELLIPTIC EVOLUTION OPERATORS: GEOMETRIC ISSUES AND APPLICATIONS

被引:0
作者
Polidoro, Sergio [1 ]
机构
[1] Dipartimento Sci Fis Informat & Matemat, VIA CAMPI 213-B, I-41125 Modena, Italy
关键词
Hypoelliptic Equations; Harnack Inequality; Potential Theory; Malliavin Calculus;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider linear second order Partial Differentia Equations in the form of "sum of squares of Hormander's vector fields plus a drift term" on a given domain. We prove that a Harnack inequality holds for every compact subset of the interior of the attainable set defined in terms of the vector fields considered. We then apply the Harnack's inequalities to prove asymptotic lower bounds of the joint density of a wide class of stochastic processes. Analogous upper bounds for the density are proved by Mallilavin's calculus.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 21 条
[1]   BOUNDS FOR FUNDAMENTAL SOLUTION OF A PARABOLIC EQUATION [J].
ARONSON, DG .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (06) :890-&
[2]  
Bauer H., 1966, LECT NOTES, V22
[3]   LIE GROUPS RELATED TO HORMANDER OPERATORS AND KOLMOGOROV-FOKKER-PLANCK EQUATIONS [J].
Bonfiglioli, Andrea ;
Lanconelli, Ermanno .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (05) :1587-1614
[4]  
Borodin A. N., 2002, HDB BROWNIAN MOTIONF
[5]  
Boscain U, 2007, REND LINCEI-MAT APPL, V18, P333
[6]  
Cinti C., 2012, SOTTOPOSTO AD RIV PU
[7]   A Note on Harnack Inequalities and Propagation Sets for a Class of Hypoelliptic Operators [J].
Cinti, Chiara ;
Nystrom, Kaj ;
Polidoro, Sergio .
POTENTIAL ANALYSIS, 2010, 33 (04) :341-354
[8]  
Constantinescu C., 1972, POTENTIAL THEORY HAR, V158
[9]  
Di Francesco M, 2006, ADV DIFFERENTIAL EQU, V11, P1261
[10]   LEVEL SETS OF THE FUNDAMENTAL SOLUTION AND HARNACK INEQUALITY FOR DEGENERATE EQUATIONS OF KOLMOGOROV TYPE [J].
GAROFALO, N ;
LANCONELLI, E .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 321 (02) :775-792