THE IRREGULARITY STRENGTH OF TP3

被引:6
作者
KINCH, L [1 ]
LEHEL, J [1 ]
机构
[1] HUNGARIAN ACAD SCI,INST COMP & AUTOMAT,H-1361 BUDAPEST 5,HUNGARY
关键词
D O I
10.1016/0012-365X(91)90309-P
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (a1,...,a(t), b1,...,b(t)) be sequence of distinct positive integers such that a(i) + b(i) are distinct for i = 1,...,t, and different from a(j) and b(j), 1 less-than-or-equal-to j less-than-or-equal-to t. Denote by s(t) the minimum of the largest element of these sequences for fixed t. In this note we prove s(t) greater-than-or-equal-to inverted right perpendicular (15t - 1)/7 inverted right perpendicular + 1 for every t. As a corollary we obtain that the irregularity strength of the graph G = tP3, the disjoint union of t paths of length 3, is about 5n/7, where n = 3t is the order of G.
引用
收藏
页码:75 / 79
页数:5
相关论文
共 7 条
[1]  
Chartrand G., 1988, CONG NUMER, V64, P187
[2]  
Guy RK., 1981, UNSOLVED PROBLEMS NU
[3]  
JACOBSON MS, UNPUB UPPER BOUND IR
[4]  
Lehel J., 1987, C MATH SOC H BOLYAI, VVolume 52, P247
[5]   LANGFORD SEQUENCES - PERFECT AND HOOKED [J].
SIMPSON, JE .
DISCRETE MATHEMATICS, 1983, 44 (01) :97-104
[6]   A NOTE ON PERFECT SYSTEMS OF DIFFERENCE SETS [J].
SIMPSON, JE .
DISCRETE MATHEMATICS, 1987, 63 (01) :109-110
[7]  
Skolem T., 1957, MATH SCAND, V5, P57, DOI 10.7146/math.scand.a-10490