ON A NON-LINEAR BOUNDARY-VALUE PROBLEM - THE EQUILIBRIUM OF A CONFINED PLASMA

被引:3
作者
CIPOLATTI, R
机构
来源
PHYSICA D | 1984年 / 13卷 / 1-2期
关键词
D O I
10.1016/0167-2789(84)90276-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:181 / 194
页数:14
相关论文
共 50 条
[31]   RIEMANN-HILBERT NON-LINEAR BOUNDARY-VALUE PROBLEM FOR THE QUASILINEAR ELLIPTIC SYSTEMS [J].
TIURIKOV, EV .
DOKLADY AKADEMII NAUK SSSR, 1979, 247 (05) :1068-1072
[33]   NOTE ON A PAPER OF SHAW,HOWARD CONCERNING A NON-LINEAR ELLIPTIC BOUNDARY-VALUE PROBLEM [J].
HETZER, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1979, 32 (02) :186-192
[34]   SOLUTION TO A MIXED BOUNDARY-VALUE PROBLEM FOR NON-LINEAR ELLIPTIC EQUATIONS BY NETWORK METHOD [J].
DOSIEV, AA ;
MAMEDOV, JD .
DOKLADY AKADEMII NAUK SSSR, 1978, 242 (04) :757-760
[35]   TOPOLOGICAL EXISTENCE PROOF FOR A NON-LINEAR 2-POINT BOUNDARY-VALUE PROBLEM [J].
DEBRUIJN, NG .
PHILIPS JOURNAL OF RESEARCH, 1981, 36 (4-6) :229-238
[36]   NON-LINEAR BOUNDARY-VALUE PROBLEM OF THE NONCLASSIC THERMAL-CONDUCTIVITY OF CRYSTAL BODIES [J].
KOLYANO, YM ;
GOI, IO .
DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1983, (05) :6-9
[37]   VARIATIONAL SOLUTION OF A NON-LINEAR BOUNDARY-VALUE PROBLEM IN THE THEORY OF POWER LAW FLUIDS [J].
ANDERSON, N ;
ARTHURS, AM .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1981, 61 (03) :201-201
[38]   A VARIATIONAL PRINCIPLE FOR BOUNDARY-VALUE PROBLEMS WITH NON-LINEAR BOUNDARY CONDITIONS [J].
Yang, Dianwu .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
[39]   A NON-LINEAR VLASOV BOUNDARY VALUE PROBLEM [J].
ZAWADZKI, EM ;
LEWAK, GJ .
BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1969, 14 (11) :1036-&
[40]   THE BOUNDARY-VALUE PROBLEM OF MAGNETOTAIL EQUILIBRIUM [J].
BIRN, J .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1991, 96 (A11) :19441-19450