NEW FORMULAS FOR THE BERNOULLI AND EULER POLYNOMIALS AT RATIONAL ARGUMENTS

被引:30
作者
CVIJOVIC, D
KLINOWSKI, J
机构
关键词
BERNOULLI POLYNOMIALS; EULER POLYNOMIALS; HURWITZ ZETA FUNCTION; SUMMATION OF SERIES;
D O I
10.2307/2161144
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove theorems on the values of the Bernoulli polynomials B-n(x) with n = 2, 3, 4,..., and the Euler polynomials E(n)(x) with n = 1, 2, 3,... for 0 less than or equal to x less than or equal to 1 where x is rational. B-n(x) and E(n)(x) are expressible in terms of a finite combination of trigonometric functions and the Hurwitz zeta function zeta(z, alpha). The well-known argument-addition formulae and reflection property of B-n(x) and E(n)(x), extend this result to any rational argument. We also deduce new relations concerning the finite sums of the Hurwitz zeta function and sum some classical trigonometric series.
引用
收藏
页码:1527 / 1535
页数:9
相关论文
共 12 条
  • [1] [Anonymous], 1953, HIGHER TRANSCENDENTA
  • [2] [Anonymous], 2013, HDB MATH FUNCTIONS F
  • [3] [Anonymous], 1996, TABLES INTEGRALS SER
  • [4] Fletcher A., 1962, INDEX MATH TABLES, V2nd
  • [5] Hansen E. R., 1975, TABLE SERIES PRODUCT
  • [6] Jordan C., 1947, CALCULUS FINITE DIFF, V2nd
  • [7] MILNETHOMSON LM, 1965, CALCULUS FINITE DIFF
  • [8] Norlund N.E., 1924, VORLESUNGEN DIFFEREN
  • [9] Oberhettinger F., 1966, FORMULAS THEOREMS SP, DOI 10.1007/978-3-662-11761-3
  • [10] Prudnikov A., 1990, INTEGRALS SERIES