ORTHOGONAL SPLINE COLLOCATION METHODS FOR SCHRODINGER-TYPE EQUATIONS IN ONE SPACE VARIABLE

被引:50
作者
ROBINSON, MP [1 ]
FAIRWEATHER, G [1 ]
机构
[1] UNIV KENTUCKY,DEPT MATH,LEXINGTON,KY 40506
关键词
D O I
10.1007/s002110050067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We examine the use of orthogonal spline collocation for the semi-discretization of the cubic Schrodinger equation and the two-dimensional parabolic equation of Tappert. In each case, an optimal order L2 estimate of the error in the semidiscrete approximation is derived. For the cubic Schrodinger equation, we present the results of numerical experiments in which the integration in time is performed using a routine from a software library.
引用
收藏
页码:355 / 376
页数:22
相关论文
共 33 条
[1]   ON FULLY DISCRETE GALERKIN METHODS OF 2ND-ORDER TEMPORAL ACCURACY FOR THE NONLINEAR SCHRODINGER-EQUATION [J].
AKRIVIS, GD ;
DOUGALIS, VA ;
KARAKASHIAN, OA .
NUMERISCHE MATHEMATIK, 1991, 59 (01) :31-53
[2]   FINITE-DIFFERENCE DISCRETIZATION OF THE CUBIC SCHRODINGER-EQUATION [J].
AKRIVIS, GD .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1993, 13 (01) :115-124
[3]  
[Anonymous], 1989, LECT NOTES PURE APPL
[4]  
ASCHER U, 1983, SIAM J NUMER ANAL, V20, P121, DOI 10.1137/0720009
[5]   COLLOCATION METHODS FOR PARABOLIC PARTIAL-DIFFERENTIAL EQUATIONS IN ONE SPACE DIMENSION [J].
CERUTTI, JH ;
PARTER, SV .
NUMERISCHE MATHEMATIK, 1976, 26 (03) :227-254
[6]   PRODUCT APPROXIMATION FOR NON-LINEAR PROBLEMS IN THE FINITE-ELEMENT METHOD [J].
CHRISTIE, I ;
GRIFFITHS, DF ;
MITCHELL, AR ;
SANZSERNA, JM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1981, 1 (03) :253-266
[7]   FINITE-DIFFERENCE SOLUTIONS OF A NON-LINEAR SCHRODINGER-EQUATION [J].
DELFOUR, M ;
FORTIN, M ;
PAYRE, G .
JOURNAL OF COMPUTATIONAL PHYSICS, 1981, 44 (02) :277-288
[8]  
Douglas J., 1974, LECT NOTES MATH, V385
[9]  
FAIRWEATHER G, 1978, LECT NOTES PURE APPL, V34