SOME NILPOTENT LIE-ALGEBRAS OF EVEN DIMENSION

被引:12
作者
SEELEY, C [1 ]
机构
[1] AUSTRALIAN NATL UNIV,DEPT MATH IAS,CANBERRA,ACT 2601,AUSTRALIA
关键词
D O I
10.1017/S0004972700037023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each even dimension greater than or equal to 8, an infinite family of 3-step nilpotent Lie algebras over C is constructed. In dimension m, the family contains isomorphism classes parameterised locally by approximately m3/48 essential parameters. One particular case is studied further to get some global information about the variety of all nilpotent Lie algebras of dimension 8. Using the results obtained here, and some known facts, it is shown that there is a component consisting of algebras not having minimal possible central dimensions.
引用
收藏
页码:71 / 77
页数:7
相关论文
共 18 条
[1]  
Ancochea J.M., 1989, ARCH MATH, V52, P175
[2]  
CARLES R, 1984, THESIS U POITIERS FR
[3]  
Chao C. Y., 1962, P AM MATH SOC, V13, P903
[4]   VARIETIES OF NILPOTENT LIE-ALGEBRAS OF DIMENSION LESS THAN 6 [J].
GRUNEWALD, F ;
OHALLORAN, J .
JOURNAL OF ALGEBRA, 1988, 112 (02) :315-325
[5]  
Magnin L., 1986, Journal of Geometry and Physics, V3, P119, DOI 10.1016/0393-0440(86)90005-7
[6]  
NEWMAN MF, UNPUB MODALITY VARIE
[7]  
Romdhani M., 1989, LINEAR MULTILINEAR A, V24, P167, DOI [10.1080/03081088908817910, DOI 10.1080/03081088908817910]
[8]  
SAFIULLINA E, MATH MECH PHYS, V64, P66
[9]  
SAFIULLINA E, 1964, THESIS IZDAT KAZAN U
[10]  
SANTHAROUBANE LJ, 1983, J MATH SOC JPN, V35, P515