BIMODAL SPECTROSCOPY OF FORMALIN FIXED SAMPLES TO DISCRIMINATE DYSPLASTIC AND TUMOR BRAIN TISSUES

被引:2
作者
Anand, S. [1 ]
Cicchi, R. [1 ,2 ]
Giordano, F. [3 ]
Buccoliero, A. M. [4 ]
Guerrini, R. [4 ]
Pavone, F. S. [1 ,2 ,5 ]
机构
[1] Univ Florence, European Lab Nonlinear Spect LENS, Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
[2] CNR, INO, I-50125 Florence, Italy
[3] Anna Meyer Pediat Hosp, Div Neurosurg, Dept Neurosci 1, I-50141 Florence, Italy
[4] Univ Florence, Div Pathol, Dept Crit Care Med & Surg, I-50134 Florence, Italy
[5] Univ Florence, Dept Phys, I-50019 Sesto Fiorentino, Italy
关键词
formalin fixation; fluorescence; Raman spectroscopy; brain tumor; dysplasia;
D O I
10.2478/lpts-2014-0027
中图分类号
O59 [应用物理学];
学科分类号
摘要
Biomedical spectroscopy has gained attention in the past few years for disease diagnosis. Fluorescence and Raman spectroscopies provide fingerprint information related to biochemical and morphological alterations when tissues progress from the normal to a malignant stage. Usually, freshly excised tissue specimens are preferred for bio-spectroscopic studies. However, ethical issues, sample availability and distance between the surgery room and the laboratory provide an impelling restriction for in-vitro spectroscopic studies using freshly excised samples. After surgical resection tissues are fixed in 4% formalin for histological studies under a light microscope. The process of fixation prevents degradation of tissues. In this study, we probe the use of formalin fixed sample for differentiating normal and dysplastic brain tissues using fluorescence and Raman spectroscopies. It was found that fluorescence spectral profile changes in the wavelength range from 550-750 nm between dysplastic and tumor samples. Also, significant differences were found in the Raman spectral profiles of such samples. The results indicate a potential diagnostic application of spectroscopy in formalin fixed brain samples for differentiating dysplastic and tumor brain tissues.
引用
收藏
页码:14 / 20
页数:7
相关论文
共 7 条
[1]   Blue-violet excited autofluorescence spectroscopy and imaging of normal and cancerous human bronchial tissue after formalin fixation [J].
Gabrecht, Tanja ;
Andrejevic-Blant, Snezana ;
Wagnieres, Georges .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 2007, 83 (02) :450-458
[2]  
Huang ZW, 2003, INT J ONCOL, V23, P649
[3]   Vibrational spectroscopy studies of formalin-fixed cervix tissues [J].
Krishna, C. M. ;
Sockalingum, G. D. ;
Vadhiraja, B. A. ;
Maheedhar, K. ;
Rao, A. C. K. ;
Rao, L. ;
Venteo, L. ;
Pluot, M. ;
Fernandes, D. J. ;
Vidyasagar, M. S. ;
Kartha, V. B. ;
Manfait, M. .
BIOPOLYMERS, 2007, 85 (03) :214-221
[4]   Micro-Raman spectroscopy for optical pathology of oral squamous cell carcinoma [J].
Krishna, CM ;
Sockalingum, GD ;
Kurien, J ;
Rao, L ;
Venteo, L ;
Pluot, M ;
Manfait, M ;
Kartha, VB .
APPLIED SPECTROSCOPY, 2004, 58 (09) :1128-1135
[5]  
Mahadevan-Jansen A, 1996, J Biomed Opt, V1, P31, DOI 10.1117/12.227815
[6]   N2 laser excited autofluorescence spectroscopy of formalin-fixed human breast tissue [J].
Majumder, SK ;
Ghosh, N ;
Gupta, PK .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 2005, 81 (01) :33-42
[7]   Fluorescence spectroscopy of neoplastic and non-neoplastic tissues [J].
Ramanujam, N .
NEOPLASIA, 2000, 2 (1-2) :89-117