Holomorphic Cartan geometries and rational curves

被引:8
作者
Biswas, Indranil [2 ]
McKay, Benjamin [1 ]
机构
[1] Univ Coll Cork, Cork, Ireland
[2] Tata Inst Fundamental Res, Homi Bhabha Rd, Mumbai 400005, Maharashtra, India
基金
爱尔兰科学基金会;
关键词
D O I
10.1515/coma-2016-0004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that any compact Kahler manifold bearing a holomorphic Cartan geometry contains a rational curve just when the Cartan geometry is inherited from a holomorphic Cartan geometry on a lower dimensional compact Kahler manifold. This shows that many complex manifolds admit no or few holomorphic Cartan geometries.
引用
收藏
页码:145 / 168
页数:24
相关论文
共 48 条
[1]   Torification and factorization of birational maps [J].
Abramovich, D ;
Karu, K ;
Matsuki, K ;
Lodarczyk, JLW .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (03) :531-572
[2]  
AKHIEZER DN, 1986, CURRENT PROBLEMS MAT, V10, P223
[3]  
Araujo C, 2003, BOLYAI MATH STUD, V12, P13
[4]  
Atiyah M.F., 1957, T AM MATH SOC, V85, P181, DOI 10.2307/1992969.
[5]  
Barth W.P., 2004, SERIES MODERN SURVEY, V4
[6]  
Bell S. R., 1990, ENCY MATH SCI, V69, P1
[7]   Rationally connected homogeneous space [J].
Bien, F ;
Borel, A ;
Kollar, J .
INVENTIONES MATHEMATICAE, 1996, 124 (1-3) :103-127
[8]   Holomorphic Cartan geometry on manifolds with numerically effective tangent bundle [J].
Biswas, Indranil ;
Bruzzo, Ugo .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 (02) :147-153
[9]   Holomorphic Cartan geometries and Calabi-Yau manifolds [J].
Biswas, Indranil ;
McKay, Benjamin .
JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (04) :661-663
[10]   Holomorphic Cartan geometries, Calabi-Yau manifolds and rational curves [J].
Biswas, Indranil ;
McKay, Benjamin .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2010, 28 (01) :102-106